Настройка оборудования и программного обеспечения

Что такое амплитудный спектр периодического сигнала. Амплитудный спектр сигнала

2.1. Спектры периодических сигналов

Периодическим сигналом (током или напряжением) называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени T , который называется периодом. Простейшей формой периодического сигнала является гармонический сигнал или синусоида, которая характеризуется амплитудой, периодом и начальной фазой. Все остальные сигналы будут негармоническими или несинусоидальными . Можно показать, и практика это доказывает, что, если входной сигнал источника питания является периодическим, то и все остальные токи и напряжения в каждой ветви (выходные сигналы) также будут периодическими. При этом формы сигналов в разных ветвях будут отличаться друг от друга.

Существует общая методика исследования периодических негармонических сигналов (входных воздействий и их реакций) в электрической цепи, которая основана на разложении сигналов в ряд Фурье. Данная методика состоит в том, что всегда можно подобрать ряд гармонических (т.е. синусоидальных) сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма ординат которых в любой момент времени равна ординате исследуемого несинусоидального сигнала. Так, например, напряжение u на рис. 2.1. можно заменить суммой напряжений и , поскольку в любой момент времени имеет место тождественное равенство: . Каждое из слагаемых представляет собой синусоиду, частота колебания которой связана с периодом T целочисленными соотношениями.

Для рассматриваемого примера имеем период первой гармоники совпадающим с периодом негармонического сигнала T 1 = T , а период второй гармоники в два раза меньшим T 2 = T /2, т.е. мгновенные значения гармоник должны быть записаны в виде:

Здесь амплитуды колебаний гармоник равны между собой ( ), а начальные фазы равны нулю.

Рис. 2.1. Пример сложения первой и второй гармоники

негармонического сигнала

В электротехнике гармоническая составляющая, период которой равен периоду негармонического сигнала, называется первой или основной гармоникой сигнала. Все остальные составляющие называются высшими гармоническими составляющими. Гармоника, частота которой в k раз больше первой гармоники (а период, соответственно, в k раз меньше), называется

k - ой гармоникой. Выделяют также среднее значение функции за период, которое называют нулевой гармоникой. В общем случае ряд Фурье записывают в виде суммы бесконечного числа гармонических составляющих разных частот:

(2.1)

где k - номер гармоники; - угловая частота k - ой гармоники;

ω 1 = ω =2 π / T - угловая частота первой гармоники; - нулевая гармоника.

Для сигналов часто встречающихся форм разложение в ряд Фурье можно найти в специальной литературе. В таблице 2 приведены разложения для восьми форм периодических сигналов. Следует отметить, что приведенные в таблице 2 разложения будут иметь место, если начало системы координат выбраны так, как это указано на рисунках слева; при изменении начала отсчета времени t будут изменяться начальные фазы гармоник, амплитуды гармоник при этом останутся такими же. В зависимости от типа исследуемого сигнала под V следует понимать либо величину, измеряемую в вольтах, если это сигнал напряжения, либо величину, измеряемую в амперах, если это сигнал тока.

Разложение в ряд Фурье периодических функций

Таблица 2

График f (t )

Ряд Фурье функции f (t )

Примечание

k=1,3,5,...

k=1,3,5,...

k=1,3,5,...

k=1,2,3,4,5

k=1,3,5,...

k=1,2,3,4,5

S=1,2,3,4,..

k=1,2,4,6,..

Сигналы 7 и 8 формируются из синусоиды посредством схем, использующих вентильные элементы.

Совокупность гармонических составляющих, образующих сигнал несинусоидальной формы, называется спектром этого негармонического сигнала. Из этого набора гармоник выделяют и различают амплитудный и фазовый спектр. Амплитудным спектром называют набор амплитуд всех гармоник, который обычно представляют диаграммой в виде набора вертикальных линий, длины которых пропорциональны (в выбранном масштабе) амплитудным значениям гармонических составляющих, а место на горизонтальной оси определяется частотой (номером гармоники) данной составляющей. Аналогично рассматривают фазовые спектры как совокупность начальных фаз всех гармоник; их также изображают в масштабе в виде набора вертикальных линий.

Следует заметить, что начальные фазы в электротехнике принято измерять в пределах от –180 0 до +180 0 . Спектры, состоящие из отдельных линий, называют линейчатыми или дискретными . Спектральные линии находятся на расстоянии f друг от друга, где f - частотный интервал, равный частоте первой гармоники f .Таким образом, дискретные спектры периодических сигналов имеют спектральные составляющие с кратными частотами - f , 2f , 3f , 4f , 5f и т.д.

Пример 2.1. Найти амплитудный и фазовый спектр для сигнала прямоугольной формы, когда длительности положительного и отрицательного сигнала равны, а среднее значение функции за период равно нулю

u (t ) = Vпри0<t <T /2

u (t ) = -VприT /2<t <T

Для сигналов простыхчасто используемых форм решение целесообразно находить с помощью таблиц.

Рис. 2.2. Линейчатый амплитудный спектр прямоугольного сигнала

Из разложения в ряд Фурье сигнала прямоугольной формы (см. табл.2 - 1) следует, что гармонический ряд содержит только нечетные гармоники, при этом амплитуды гармоник убывают пропорционально номеру гармоники. Амплитудный линейчатый спектр гармоник представлен на рис. 2.2. При построении принято, что амплитуда первой гармоники (здесь напряжения) равна одному вольту: B; тогда амплитуда третьей гармоники будет равна B, пятой - B и т.д. Начальные фазы всех гармоник сигнала равны нулю, следовательно, фазовый спектр имеет только нулевые значения ординат.

Задача решена.

Пример 2.2. Найти амплитудный и фазовый спектр для напряжения, изменяющегося по закону: при -T /4<t <T /4; u (t ) = 0 при T /4<t <3/4T . Такой сигнал формируется из синусоиды посредством исключения (схемным путем с использованием вентильных элементов) отрицательной части гармонического сигнала.


а)б)

Рис. 2.3. Линейчатый спектр сигнала однополупериодного выпрямления: а)амплитудный; б)фазовый

Для сигнала однополупериодного выпрямления синусоидального напряжения (см. табл.2 - 8) ряд Фурье содержит постоянную составляющую (нулевую гармонику), первую гармонику и далее набор только четных гармоник, амплитуды которых быстро убывают с ростом номера гармоники. Если, например, положить величину V = 100 B, то, умножив каждое слагаемое на общий множитель 2V/π , найдем (2.2)

Амплитудный и фазовый спектры этого сигнала изображены на рис.2.3а,б.

Задача решена.

В соответствии с теорией рядов Фурье точное равенство негармонического сигнала сумме гармоник имеет место только при бесконечно большом числе гармоник. Расчет гармонических составляющих на ЭВМ позволяет анализировать любое число гармоник, которое определяется целью расчета, точностью и формой негармонического воздействия. Если длительность сигнала t независимо от его формы много меньше периода T , то амплитуды гармоник будут убывать медленно, и для более полного описания сигнала приходится учитывать большое число членов ряда. Эту особенность можно проследить для сигналов, представленных в таблице 2 - 5 и 6, при выполнении условия τ <<T . Если негармонический сигнал по форме близок к синусоиде (например, сигналы 2 и 3 в табл.2), то гармоники убывают быстро, и для точного описания сигнала достаточно ограничиться тремя - пятью гармониками ряда.

Не так давно товарищ , как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.

Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.

Что будем делать.
Использовать спектральный анализ для того, чтобы определить:

  • количество гармоник в составе сигнала, а для каждой: амплитуду, частоту (далее в контексте числа длин волн на длину сигнала), начальную фазу;
  • наличие/отсутствие белого шума, а при наличии, его СКО (среднеквадратическое отклонение);
  • наличие/отсутствие постоянной составляющей сигнала;
  • всё это оформить в красивенький PDF отчёт с блэкджеком и иллюстрациями.

Будем решать данную задачу на Java.

Матчасть

Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ» . Давайте кратенько разберём, что же это за зверь такой.
Немного особой, Фурье-магии
Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя - ряд Фурье .

В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.

Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.

Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье .
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром .
Небольшое отступление: спектр преобразования Фурье - в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра - это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы - соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр .


Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.

Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.

Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию - спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье - дискретное преобразование Фурье (ДПФ) .

Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.

Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.

Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.

Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.

Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.


Рис. 2. Амплитудный спектр синусоидального сигнала.

Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции - F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).

На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:


Рис. 3. Эффект растекания спектра.

Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.

Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.


Рис. 4. Отдельные спектры гармоник.

Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.


Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.

Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.

Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование .

Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w 0 – w гет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.


Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.

Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.

Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:

Автоматизируй это

Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:

1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.

Алгоритм не сложный, и единственный возникающий вопрос - откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.

Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат - количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:


Рис. 7. Функция распределения гармоник.

Теперь построим еще и функцию - плотность распределения. Т.е., значения конечных разностей от функции распределения.


Рис. 8. Плотность функции распределения гармоник.

Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.

Посмотреть на кусок кода, детектирующий гармоники в составе сигнала

public ArrayList detectHarmonics() { SignalCutter cutter = new SignalCutter(source, new Signal(source)); SynthesizableComplexExponent heterodinParameter = new SynthesizableComplexExponent(); heterodinParameter.setProperty("frequency", 0.0); Signal heterodin = new Signal(source.getLength()); Signal heterodinedSignal = new Signal(cutter.getCurrentSignal()); Spectrum spectrum = new Spectrum(heterodinedSignal); int harmonic; while ((harmonic = spectrum.detectStrongPeak(min)) != -1) { if (cutter.getCuttersCount() > 10) throw new RuntimeException("Unable to analyze signal! Try another parameters."); double heterodinSelected = 0.0; double signalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); for (double heterodinFrequency = -0.5; heterodinFrequency < (0.5 + heterodinAccuracy); heterodinFrequency += heterodinAccuracy) { heterodinParameter.setProperty("frequency", heterodinFrequency); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); double newSignalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); if (newSignalToNoise > signalToNoise) { signalToNoise = newSignalToNoise; heterodinSelected = heterodinFrequency; } } SynthesizableCosine parameter = new SynthesizableCosine(); heterodinParameter.setProperty("frequency", heterodinSelected); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); parameter.setProperty("amplitude", MathHelper.adaptiveRound(spectrum.getRealAmplitude(harmonic))); parameter.setProperty("frequency", harmonic - heterodinSelected); parameter.setProperty("phase", MathHelper.round(spectrum.getPhase(harmonic), 1)); cutter.addSignal(parameter); cutter.cutNext(); heterodinedSignal.set(cutter.getCurrentSignal()); spectrum.recalc(); } return cutter.getSignalsParameters(); }

Практическая часть

Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на

Любой сигнал можно разложить на составляющие. Такое разложение сигнала называется спектральным. При этом сигнал можно представить в виде графика зависимости параметров сигнала от частоты, такая диаграмма называется спектральной или спектром сигнала.

Спектр сигнала — это совокупность простых составляющих сигнала с определенными амплитудами, частотами и начальными фазами.
Между спектром сигнала и его формой существует жесткая взаимосвязь: изменение формы сигнала приводит к изменению его спектра и наоборот, любое изменение спектра сигнала приводит к изменению его формы. Это важно запомнить, поскольку при передаче сигналов в системе передачи, они подвергаются преобразованиям, а значит, происходит преобразование их спектров.

Различают два вида спектральных диаграмм:
— спектральная диаграмма амплитуд;
— спектральная диаграмма фаз.

В спектральной диаграмме амплитуд — отображаются все составляющие со своими амплитудами и частотами.
В спектральной диаграмме фаз — отображаются все составляющие со своими начальными фазами и частотами.
Любой сигнал имеет одну спектральную диаграмму амплитуд и одну спектральную диаграмму фаз, в составе которых может содержаться множество составляющих.

Не зависимо от того, какой спектр (амплитуд или фаз), он изображается в виде множества линий — составляющих. В спектре амплитуд высота спектральной линии равна амплитуде составляющей сигнала, а в спектре фаз — начальной фазе составляющей. Причем: в спектре амплитуд все составляющие имеют положительные значения, а в спектре фаз как положительные, так и отрицательные. Если амплитуда спектральной составляющей имеет отрицательный знак, то в спектре амплитуд она берется по модулю, а в спектре фаз знак составляющей изменяется на противоположный.

Классификация спектров сигналов.
1. По виду спектры бывают дискретными (линейчатыми) или сплошными .
Дискретным является спектр, у которого можно выделить отдельные составляющие.
Сплошным является спектр, у которого нельзя выделить отдельные составляющие, так как они расположены настолько близко, что сливаются друг с другом.
2. По диапазону частот различают спектры ограниченные и неограниченные .
Ограниченным является спектр, у которого вся энергия сигнала (все спектральные составляющие) находятся в ограниченном диапазоне частот (fmax ? ?).
Неограниченным является спектр, у которого вся энергия сигнала находится в неограниченном диапазоне частот (fmax ? ?). На практике такие спектры ограничивают.

Спектральное представление периодических сигналов

1. Гармоническое колебание.
Математическая модель гармонического колебания имеет вид:

u(t)=Ums sin (?st+?s) (11)

Как видно из математической модели, в спектре данного колебания присутствует одна гармоническая составляющая, которая находится на частоте?s. Высота составляющей в спектре амплитуд равна амплитуде колебания Ums, а в спектре фаз — начальной фазе колебания?s. Причем при построении спектра необходимо учитывать связь между временной диаграммой сигнала и спектром амплитуд. Амплитуда составляющей спектра должна по высоте соответствовать амплитуде колебания на временной диаграмме.
Необходимо отметить, что при увеличении частоты сигнала, его составляющая будет удаляться по оси частот от нуля (рисунок 13).

Рисунок 13 - Спектральное представление гармонических колебаний

Как видно из рисунков, спектр гармонического колебания является дискретным и ограниченным.
2. Периодические, негармонические сигналы.
Основной особенностью спектрального представления таких сигналов является наличие в их спектре множества спектральных составляющих. Такие сигналы могут быть описаны рядом Фурье, согласно которому:

т. е. сигнал может быть представлен суммой постоянной составляющей и множества гармонических составляющих.

Преобразуем данный ряд, используя тригонометрическое свойство

sin(x+y) = sin x cos y + cos x sin y (13)

Полагая что x=?k и y=k?ct получим:

Поскольку Umk и?k являются параметрами ряда, то их можно обозначить коэффициентами

Umk sin ? k = ak; Umk cos ?k = bk (15)

Тогда ряд примет вид:

Параметры ряда можно определить через коэффициенты ak и bk:

где k=1, 2, 3 …

Амплитуда постоянной составляющей и коэффициенты могут быть определены через значение сигнала u(t):

Из ряда следует, что если описываемый сигнал является четной функцией f(t)=f(-t), то ряд будет иметь только косинусоидальные составляющие, так как bk=0, если нечетная функция (f(t) ? f(-t)), то рад содержит только синусоидальные составляющие (ak=0).
Рассмотрим спектральное представление периодических, негармонических сигналов на примере периодической последовательности прямоугольных импульсов (ПППИ).
При построении спектра необходимо рассчитать следующие параметры:
а) скважность сигнала:

б) значение постоянной составляющей:

в) частоту первой гармоники спектра, которая равна частоте сигнала:

г) амплитуды гармонических составляющих спектра:

При построении спектра необходимо отметить следующие особенности:
1. Все гармонические составляющие находятся на частотах, кратных частоте первой гармоники (2?1, 3?1, 4?1 и т. д.);
2. Для спектра амплитуд:
а) спектр ПППИ имеет лепестковый характер, т. е. в спектре можно выделить множество «лепестков»;
б) количество гармонических составляющих в лепестке зависит от скважности и равно q — 1;
в) амплитуды гармонических составляющих, находящихся на частотах, кратных скважности, равны нулю;
г) форма спектра обозначается огибающей — пунктирной линией, плавно соединяющей вершины гармонических составляющих;
д) точка, из которой исходит огибающая, равна 2U0 или 2I0.
3. Для спектра фаз:
а) все гармонические составляющие, на частотах, не кратных скважности, имеют одинаковую высоту, равную?/2 (90°);
б) все гармонические составляющие в одном лепестке имеют одинаковый знак, а в соседних противоположный.
в) составляющие на частотах кратных скважности имеют начальную фазу равную нулю.
Спектры ПППИ при скважности q=3 представлены на рисунке 14.
Как видно из диаграмм спектр ПППИ является дискретным и неограниченным. Поэтому за ширину спектра принимают диапазон частот, в пределах которого находится два первых лепестка, т. к. в них содержится около 95% энергии сигнала:

Fs = 2/?и. (26)

Рисунок 14 - Спектральное представление ПППИ: а) временная диаграмма; б) спектральная диаграмма амплитуд; в) спектральная диаграмма фаз

Как видно из формулы ширина спектра ПППИ зависит только от длительности импульса и не зависит от его периода.
3. Непериодические сигналы .
Поскольку в непериодических сигналах нельзя выделить период, т. к. Т??, то рассчитать и построить спектр тем же методом, что и для периодических сигналов нельзя. Однако знать спектр таких сигналов необходимо, т. к. все информационные сигналы являются непериодическими. Для построения спектра непериодического сигнала производят следующую процедуру: сигнал мысленно представляют как периодический с произвольным периодом, ддля которого строят спектр. Затем осуществляют предельный переход устремляя период к бесконечности (Т??) (рисунок 15). При этом частота первой гармоники и, соответственно, расстояние между гармоническими составляющими стремится к нулю (f1=1/Т), поэтому все составляющие сливаются друг с другом и образуют сплошной спектр.

Рисунок 15 - Импульсный сигнал u(t) и его представление периодическим сигналом

Форма спектра непериодических сигналов обозначается огибающей (сплошной линией) (рисунок 16).

Рисунок 16 - Спектральная диаграмма непериодического сигнала

Ряд Фурье, для таких сигналов, также нельзя записать, т. к. в этом случае амплитуда постоянной составляющей и коэффициенты ak и bk равны нулю. В этом случае значение сигнала в любой момент времени также равно нулю, что является не верным. Поэтому для таких сигналов используют преобразования Фурье:

Выражение (27) является обратным преобразованием, а (28) прямым преобразованием Фурье.
Величина S(?) является комплексной спектральной плотностью непериодического сигнала u(t). Она равна:

S(?) = S(?)e ^(-j?(?)) (29)

где S(?) спектральная плотность амплитуд или амплитудный спектр непериодического сигнала, а?(?) — фазовый спектр непериодического сигнала.
Спектральная плотность амплитуд непериодического сигнала на любой частоте? равна суммарной амплитуде составляющих находящихся в малой полосе?? в окрестностях частоты? пересчитанных на 1 Герц.
Временные диаграммы и спектральные плотности амплитуд для прямоугольного и треугольного импульсов представлены на рисунке 18:

Рисунок 18 - Спектральное представление непериодических сигналов: а) прямоугольный импульс; б) треугольный импульс

Спектральное представление сигналов

Любой сигнал можно разложить на составляющие. Такое разложение сигнала называется спектральным. При этом сигнал можно представить в виде графика зависимости параметров сигнала от частоты, такая диаграмма называется спектральной или спектром сигнала.

Спектр сигнала - это совокупность простых составляющих сигнала с определенными амплитудами, частотами и начальными фазами. Между спектром сигнала и его формой существует жесткая взаимосвязь: изменение формы сигнала приводит к изменению его спектра и наоборот, любое изменение спектра сигнала приводит к изменению его формы. Это важно запомнить, поскольку при передаче сигналов в системе передачи, они подвергаются преобразованиям, а значит, происходит преобразование их спектров.

Различают два вида спектральных диаграмм: - спектральная диаграмма амплитуд; - спектральная диаграмма фаз.

В спектральной диаграмме амплитуд - отображаются все составляющие со своими амплитудами и частотами. В спектральной диаграмме фаз - отображаются все составляющие со своими начальными фазами и частотами. Любой сигнал имеет одну спектральную диаграмму амплитуд и одну спектральную диаграмму фаз, в составе которых может содержаться множество составляющих.

Не зависимо от того, какой спектр (амплитуд или фаз), он изображается в виде множества линий - составляющих. В спектре амплитуд высота спектральной линии равна амплитуде составляющей сигнала, а в спектре фаз - начальной фазе составляющей. Причем: в спектре амплитуд все составляющие имеют положительные значения, а в спектре фаз как положительные, так и отрицательные. Если амплитуда спектральной составляющей имеет отрицательный знак, то в спектре амплитуд она берется по модулю, а в спектре фаз знак составляющей изменяется на противоположный.

Классификация спектров сигналов. 1. По виду спектры бывают дискретными (линейчатыми) или сплошными . Дискретным является спектр, у которого можно выделить отдельные составляющие. Сплошным является спектр, у которого нельзя выделить отдельные составляющие, так как они расположены настолько близко, что сливаются друг с другом. 2. По диапазону частот различают спектры ограниченные и неограниченные . Ограниченным является спектр, у которого вся энергия сигнала (все спектральные составляющие) находятся в ограниченном диапазоне частот (fmax ? ?). Неограниченным является спектр, у которого вся энергия сигнала находится в неограниченном диапазоне частот (fmax ? ?). На практике такие спектры ограничивают.

Спектральное представление периодических сигналов

1. Гармоническое колебание. Математическая модель гармонического колебания имеет вид:

u(t)=Ums sin (?st+?s) (11)

Как видно из математической модели, в спектре данного колебания присутствует одна гармоническая составляющая, которая находится на частоте?s. Высота составляющей в спектре амплитуд равна амплитуде колебания Ums, а в спектре фаз - начальной фазе колебания?s. Причем при построении спектра необходимо учитывать связь между временной диаграммой сигнала и спектром амплитуд. Амплитуда составляющей спектра должна по высоте соответствовать амплитуде колебания на временной диаграмме. Необходимо отметить, что при увеличении частоты сигнала, его составляющая будет удаляться по оси частот от нуля (рисунок 13).

Рисунок 13 - Спектральное представление гармонических колебаний

Как видно из рисунков, спектр гармонического колебания является дискретным и ограниченным. 2. Периодические, негармонические сигналы. Основной особенностью спектрального представления таких сигналов является наличие в их спектре множества спектральных составляющих. Такие сигналы могут быть описаны рядом Фурье, согласно которому:
т. е. сигнал может быть представлен суммой постоянной составляющей и множества гармонических составляющих.

Преобразуем данный ряд, используя тригонометрическое свойство

sin(x+y) = sin x cos y + cos x sin y (13)

Полагая что x=?k и y=k?ct получим:

Поскольку Umk и?k являются параметрами ряда, то их можно обозначить коэффициентами

Umk sin ? k = ak; Umk cos ?k = bk (15)

Тогда ряд примет вид:

Параметры ряда можно определить через коэффициенты ak и bk:

где k=1, 2, 3 …

Амплитуда постоянной составляющей и коэффициенты могут быть определены через значение сигнала u(t):

Из ряда следует, что если описываемый сигнал является четной функцией f(t)=f(-t), то ряд будет иметь только косинусоидальные составляющие, так как bk=0, если нечетная функция (f(t) ? f(-t)), то рад содержит только синусоидальные составляющие (ak=0). Рассмотрим спектральное представление периодических, негармонических сигналов на примере периодической последовательности прямоугольных импульсов (ПППИ). При построении спектра необходимо рассчитать следующие параметры: а) скважность сигнала:

б) значение постоянной составляющей:

в) частоту первой гармоники спектра, которая равна частоте сигнала:

г) амплитуды гармонических составляющих спектра:

При построении спектра необходимо отметить следующие особенности: 1. Все гармонические составляющие находятся на частотах, кратных частоте первой гармоники (2?1, 3?1, 4?1 и т. д.); 2. Для спектра амплитуд: а) спектр ПППИ имеет лепестковый характер, т. е. в спектре можно выделить множество «лепестков»; б) количество гармонических составляющих в лепестке зависит от скважности и равно q - 1; в) амплитуды гармонических составляющих, находящихся на частотах, кратных скважности, равны нулю; г) форма спектра обозначается огибающей - пунктирной линией, плавно соединяющей вершины гармонических составляющих; д) точка, из которой исходит огибающая, равна 2U0 или 2I0. 3. Для спектра фаз: а) все гармонические составляющие, на частотах, не кратных скважности, имеют одинаковую высоту, равную?/2 (90°); б) все гармонические составляющие в одном лепестке имеют одинаковый знак, а в соседних противоположный. в) составляющие на частотах кратных скважности имеют начальную фазу равную нулю. Спектры ПППИ при скважности q=3 представлены на рисунке 14. Как видно из диаграмм спектр ПППИ является дискретным и неограниченным. Поэтому за ширину спектра принимают диапазон частот, в пределах которого находится два первых лепестка, т. к. в них содержится около 95% энергии сигнала:

Fs = 2/?и. (26)

Рисунок 14 - Спектральное представление ПППИ: а) временная диаграмма; б) спектральная диаграмма амплитуд; в) спектральная диаграмма фаз

Как видно из формулы ширина спектра ПППИ зависит только от длительности импульса и не зависит от его периода. 3. Непериодические сигналы . Поскольку в непериодических сигналах нельзя выделить период, т. к. Т??, то рассчитать и построить спектр тем же методом, что и для периодических сигналов нельзя. Однако знать спектр таких сигналов необходимо, т. к. все информационные сигналы являются непериодическими. Для построения спектра непериодического сигнала производят следующую процедуру: сигнал мысленно представляют как периодический с произвольным периодом, ддля которого строят спектр. Затем осуществляют предельный переход устремляя период к бесконечности (Т??) (рисунок 15). При этом частота первой гармоники и, соответственно, расстояние между гармоническими составляющими стремится к нулю (f1=1/Т), поэтому все составляющие сливаются друг с другом и образуют сплошной спектр.

Рисунок 15 - Импульсный сигнал u(t) и его представление периодическим сигналом

Форма спектра непериодических сигналов обозначается огибающей (сплошной линией) (рисунок 16).

Рисунок 16 - Спектральная диаграмма непериодического сигнала

Ряд Фурье, для таких сигналов, также нельзя записать, т. к. в этом случае амплитуда постоянной составляющей и коэффициенты ak и bk равны нулю. В этом случае значение сигнала в любой момент времени также равно нулю, что является не верным. Поэтому для таких сигналов используют преобразования Фурье:

Выражение (27) является обратным преобразованием, а (28) прямым преобразованием Фурье. Величина S(?) является комплексной спектральной плотностью непериодического сигнала u(t). Она равна:

S(?) = S(?)e ^(-j?(?)) (29)

где S(?) спектральная плотность амплитуд или амплитудный спектр непериодического сигнала, а?(?) - фазовый спектр непериодического сигнала. Спектральная плотность амплитуд непериодического сигнала на любой частоте? равна суммарной амплитуде составляющих находящихся в малой полосе?? в окрестностях частоты? пересчитанных на 1 Герц. Временные диаграммы и спектральные плотности амплитуд для прямоугольного и треугольного импульсов представлены на рисунке 18:

Рисунок 18 - Спектральное представление непериодических сигналов: а) прямоугольный импульс; б) треугольный импульс

Всякий периодический сигнал воздействия f(t) – может быть представлен бесконечной суммой синусоид кратных частот – рядом Фурье:

,
(12)

Периодическая функция времени обладает свойством повторения формы через минимальный промежуток времени T, называемый периодом функции:

.

Период определяет частоту основной гармоники бесконечной суммы, которой кратны все слагаемые:

.

Коэффициенты ряда (12) определяются по формулам Фурье:

(13)

Объединение синуса и косинуса одной частоты в выражение (12) дает другую форму ряда Фурье:

(14)

где
,
.

В теории цепей удобнее использовать комплексную форму ряда Фурье:

(15)

здесь комплексная амплитуда к-й гармоник

;

, (16)

где

С учетом выражений (14) и (15) можно получить выражение (17):

(17)

Вещественность
означает, что ряд состоит только из косинусных гармоник, а функция времени является четной.

Амплитудный спектр:

, (18)

число гармоник на интервале между двумя узлами равно отношению
, называемого скважностью импульсов.

На вход ARC - фильтра будем действовать периодическим сигналом прямоугольной формы, имеющего следующие характеристики:

Скважность: S = 3

Амплитуда, В: U = 8

Порядок Фурье: n = 4

Будем исследовать реакцию фильтр при воздействие на него сигнала частотой лежащей в полосе пропускания. Для этого выберем частоту сигнала воздействия
, где
- резонансная частота данного фильтра. Отсюда частота сигнала воздействия
Гц.

1.Суммирование функций и построение графика суммы.

Рассмотрим разложение в усеченный ряд Фурье периодической последовательности импульсов со скважностью s и числом слагаемых N:

Для построения графика суммы воспользуемся компьютерной программой MathCAD:

2.Амплитудный спектр воздействия.

3.Фазный спектр воздействия.

      . Рассчитаем амплитудный и фазный спектры реакции:

В пункте 1.3 были получены амплитудный и фазовый спектры сигнала воздействия. Определим, какова будет реакция исследуемого ARC – фильтра, если на его вход воздействовать периодическим сигналом (см. п.п. 1.3).

1. Амплитудный спектр реакции:

Рис. 6 График амплитудного спектра реакции.

Из графика видно, что при k=2 наблюдается максимальная пропускная способность фильтра. Это обусловлено тем, что   к где   частота основной гармоники.

2. Фазный спектр реакции:

Рис. 8 Фазный спектр реакции.

1.5. Построим график функции времени реакции цепи на заданное воздействие:

По амплитудному и фазному спектрам (см. п.п. 1.3) можно построить соответствующую им функцию времени по формулам (14).

Для построения графика функции времени воспользуемся компьютерной программой MathCAD:

Рис.9. График функции времени.

На Рис. 9 представлены графики сигналов воздействия () и реакции () ARC – фильтра.

1.6. Рассчитаем и построим графики амплитудного и фазного спектров воздействия и реакции, а также временные функции воздействия и реакции с периодом в два раза больше.

В п.п. 1.3. – 1.4 мы исследовали реакцию фильтра при воздействие на него периодическим сигналом, частотой
, где- резонансная частота данногоARC - фильтра. По условию данного пункта примем частоту сигнала воздействия
.

График суммы:

Рис. 10. График суммы.

Амплитудный спектр воздействия.

Рис. 4 Амплитудный спектр воздействия.

Амплитудный спектр реакции имеет следующий вид:

Рис. 11Амплитудный спектр реакции.

Фазный спектр воздействия.

Рис. 5 Фазный спектр воздействия.

Фазный спектр реакции имеет следующий вид:

Рис. 12 Фазный спектр реакции

Временные функции:

Рис.13 График функции времени.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!