Настройка оборудования и программного обеспечения

Что еще может MIDI? Что такое Интерфейс MIDI.

MIDI (Musical Instrument Digital Interface) - проще говоря, цифровой интерфейс музыкальных инструментов . Если все равно не понятно, то слушайте мой рассказ.
Когда в музыку стали проникать компьютеры, то разработчики электронных инструментов подумали: "А не возложить ли нам часть сложного управления электромузыкальными инструментами (ЭМИ) на ЭВМ?" Что это сулило? Как Вам известно, составы музыкальных команд с течением времени все уменьшались в своем количестве и уменьшались. Это, конечно, дает свободу творчеству, но композитор хочет использовать при аранжировке своей песни не один, а пару десятков разных инструментов. Кроме того он не хочет ждать репитиции большого оркестра, чтобы услышать свою новую идею. Зачастую у него и нет никакого оркестра. Значит неплохо было бы поиметь возможность запрограммировать партитуры, а потом автоматически их воспроизвести.
Всяких разных ЭМИ к тому времени было просто валом. Даже к некоторым из них можно было проводом подключить "электрического музыканта" (этакий ящичек с лампочками и кнопочками, называемый секвенсером ) специальным проводом, который посылал команды типа "нажать определенную ноту". Но главная проблема была в том, что "музыкант" от одной модели инструмента не подходил к другой.
Тогда было решено, создать единый интерфейс (заранее оговоренный набор команд управления и способ соединения между устроиствами) подключения электронных музыкальных инструментов к секвенсерам и между собой. Таким интерфейсом и стал MIDI. Теперь мы можем присоединить синтезатор Yamaha к секвенсеру Roland, и это будет работать. Кстати сейчас в основном в качестве секвенсера применяют компьютер.

Теперь рассмотрим, что еще позволяет нам делать MIDI, кроме передачи команд на нажатие нот.

    В синтезаторе имеется куча различных ручек и кнопочек (фильтры, модуляция, вибрато, уровень реверберации), чтобы повысить выразительность исполнения, их приходится постоянно крутить во время игры. В набор MIDI-команд входят команды управления контроллерами (этими самыми ручечками и кнопочками, а также ножными педалями типа фортепианных). Это значит, что компьютер при проигрывании музыки может посылать синтезатору команду "под каким углом (на какую позицию) повернуть ручку" или "нажать/отжать кнопку", включить звук рояля или скрипки.

    Например, мы создавали-создавали звуки на нашем синтезаторе и заполнили всю его память. Что нам теперь делать? По MIDI мы сможем передать содержимое памяти инструмента (или любого другого MIDI-устройства) в компьютер в виде блока данных (MIDI bulk dump ) и сохранить на жестком диске. По MIDI-же мы сможем загрузить данные с машины обратно в синтезатор.

    Есть еще проблема. MIDI - общие для всех инструментов команды. Но все возможные команды предусмотреть при разработке этого стандарта было невозможно, да и отведенного количества количества контроллеров может не хватить, поэтому была оставлена лазейка - SYSX (System Exclusive Messages - эксклюзивные -особые - для каждой модели MIDI-устройств сообщения неопределенной длины). Они имеют только стандартное начало (заголовок, header) и окончание, а в середине каждый разработчик пишет, что хочет.

Наверное Вы не раз уже встречали термин GENERAL MIDI ? Это стандарт, в котором оговорены номера контроллеров (ручка громкости у всех инструментов, отвечающих этому стандарту, всегда имеет номер 7, ручка "ревербератор" - 91 и т.д.), набор и порядок следования патчей (patch , звуков - например пианино имеет всегда номер 1, а церковный орган -20). Это не значит, что все синтезаторы, сделанные по стандарту General MIDI, будут играть одинаковыми звуками. Нет. На разных инструментах патч под номером 1 будет содержать пианино, но с разным качеством звучания. Иногда настолько плохим, что даже экспертам в этом вопросе трудно догадаться, что это за звук. В основном этот стандарт применяется для создания музыкального сопровождения к играм.
Кроме того, еще есть более расширенные по набору звуков стандарты GENERAL SOUND и XG .

Если мы имеем компьютер и несколько синтезаторов, на которых хотим играть в одной песне разные партии (ударные, соло, бас, фон), то все они должны быть подключены к одному MIDI-кабелю. Секвенсер (программа работающая на компьютере) передает в этот кабель команды для всех инструментов. Каким-же образом, спросите Вы, каждый из синтезаторов будет отличать команды, предназначенные лично ему? Для этого и существуют MIDI-каналы (MIDI channel).
Принцип действия, примерно, как в радиоприемнике. Ваш приемник принимает только ту радиостанцию, на которую Вы его настроите. Вот и представьте, MIDI-канал - это частота радиостанции (типа 104 и 4 FM), на которую настраивается приемник. В компьютере стоит 16 радиостанций с разными частотами, каждая из которых передает партию только своего инструмента, а в каждом синтезаторе - приемник, настроенный на радиостанцию, которая передает его партию. Радиоволны же идут не по воздуху, а через провод.
В общем-то, можно передавать любую партию по любому каналу. Правда в General MIDI принято для партии ударных использовать 10-й MIDI-канал.
В действительности же MIDI-каналы создаются безо всякого участия радиоволн. Мы присваиваем синтезатору адрес (номер MIDI-канала). А в начале каждой MIDI-команды передается номер канала синтезатора, которому она предназначена. Синтезатор принимает все команды, но выполняет только те, которые содержат номер его канала.

Наиболее удобно располагать одно или несколько мета-событий подобного типа в самом начале MTrk записи, поскольку эти события несут вспомогательную информацию, которая информирует пользователя о том, какой инструмент исполняет данный трек, а также сообщают другие полезные данные. Обычно реальные параметры, задающие тип инструмента, исполняющего трек, хранятся в файле в виде MIDI-событий типа MIDI Program Change, а описанные здесь мета-события позволяют снабдить пользователя удобно читаемыми описаниями, соответствующими сделанным в MTrk записях конфигурациям.

Слова

FF 05 len text

Текстовое мета-событие, содержащее слова вокального произведения, приходящиеся на ту или иную музыкальную долю. Одно мета-событие «Слова» должно содержать один единственный слог текста.

Отметим, что величина len представляется в виде значения переменной длины.

Маркер

FF 06 len text

Текстовое мета-событие Маркер устанавливается на определенной музыкальной доле. Это событие может использоваться для организации петель и может обозначать начальную и конечную точку петли.

Отметим, что величина len представляется в виде значения переменной длины.

Точка входа Cue Point

FF 07 len text

Текстовое мета-событие «точка входа» может использоваться для обозначения точки входа внешнего потока данных, например точки начала воспроизведения файла с цифровым звуком. Текстовое значение данного мета-события может содержать имя WAV файла, содержащего цифровой звук.

Отметим, что величина len представляется в виде значения переменной длины.

Канал MIDI

FF 20 01 cc

Это необязательное мета-событие обычно располагается в начале MTrk сообщения перед первой ненулевой временной меткой и перед первым мета-событием, исключая мета-событие номера последовательности. Мета-событие «канал MIDI» устанавливает значение MIDI-канала с которым будут связаны все последующие мета-события и события SYSEX. Байт данных cc - это номер MIDI-канала, величине 0 соответствует первый канал.

Спецификация MIDI не предусматривает указание номера канала для SYSEX событий и мета-событий. Если создается файл типа 0, то все SYSEX события и мета-события находятся на одном треке и затруднительно распределить эти события между соответствующими канальными (голосовыми) сообщениями (например, если вы хотите обозначить партию канала 1 как «Флейта соло», а партию канала 2 как «Труба соло», то вам придется использовать два мета-события «Имя трека» для введения этих названий, но поскольку оба этих трека расположены на одном канале, то перед первым мета-сообщением имени трека необходимо поместить мета-сообщение «канал MIDI», в котором указать номер соответствующего канала, а перед вторым мета-сообщением имени трека поместить мета-сообщение канала MIDI с указанием номера второго канала.

На одном MIDI-треке можно использовать более одного мета-сообщения «канал MIDI», если события этого трека нужно распределить между несколькими каналами MIDI.

Порт MIDI

FF 21 01 pp

Это необязательное событие, которое как правило располагается в начале записи MTrk перед первым ненулевым временем дельта и перед первым MIDI-событием, которое определяет, с каким MIDI-портом (или устройством) связаны события данного MTrk сообщения. Байт данных pp - это номер порта, нулевому значению pp соответствует первое MIDI-устройство в системе.

Спецификация MIDI предусматривает лишь 16 каналов на один входной или выходной порт (устройство, разъем, инструмент - терминология может быть различной) MIDI. Номер MIDI-канала каждого события MIDI содержится в статус байте события, где он занимает четыре младших бита. Таким образом, номер канала всегда представляет собой число в пределах от 0 до 15. Иногда система позволяет осуществлять работу более чем с 16 каналами MIDI, возникает необходимость преодолеть ограничения, накладываемые малым количеством каналов MIDI, и расширить возможности обмена MIDI-данными, сделать обмен информацией со внешними MIDI-устройствами более эффективным, то есть позволить музыканту работать более чем с 16 каналами. Некоторые секвенсоры также позволяют осуществлять работу более чем с 16 MIDI-каналами на входе и выходе одновременно. К сожалению, протокол MIDI не предусматривает возможность использования более чем 16 MIDI-каналов в рамках статус байта в событии MIDI. Поэтому необходим дополнительный метод, который позволяет различать события, которые соответствуют первому каналу на первом MIDI-порте от событий, соответствующих, скажем, первому каналу на втором MIDI-порте. Описываемой мета-событие позволяет секвенсору определить на какой MIDI-порт посылать события данного MTrk сообщения.

Что такое MIDI?

Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов. Создан в 1982 году ведущими производителями электронных музыкальных инструментов - Yamaha, Roland, Korg, E-mu и др. Изначально был предназначен для замены принятого в то время управления музыкальными инструментами при помощи аналоговых сигналов управлением при помощи информационных сообщений, передаваемых по цифровому интерфейсу. Впоследствии стал стандартом де-факто в области электронных музыкальных инструментов и компьютерных модулей синтеза.

MIDI представляет собой так называемый событийно-ориентированный протокол связи между инструментами. Всякий раз, когда исполнитель производит какое-либо воздействие на органы управления (нажатие/отпускание клавиш, педалей, изменение положений регуляторов и т.п., инструмент формирует соответствующее MIDI-сообщение, в тот же момент посылаемое по интерфейсу. Другие инструменты, получая сообщения, отрабатывают их так же, как и при воздействии на их собственные органы управления. Таким образом, поток MIDI-сообщений представляет собой как бы слепок с действий исполнителя, сохраняя присущий ему стиль исполнения - динамику, технические приемы и т.п. При записи на устройства хранения информации MIDI-сообщения снабжаются временнЫми метками, образуя своеобразный способ представления партитуры. При воспроизведении по этим меткам полностью и однозначно восстанавливается исходный MIDI-поток.

Спецификация MIDI состоит из аппаратной спецификации самого интерфейса и спецификации формата данных - описания системы передаваемых сообщений. Соответственно, различается аппаратный MIDI-интерфейс и формат MIDI-данных (так называемая MIDI-партитура); интерфейс используется для физического соединения источника и приемника сообщений, формат данных - для создания, хранения и передачи MIDI-сообщений. В настоящее время эти понятия стали самостоятельными и обычно используются отдельно друг от друга - по MIDI-интерфейсу могут передаваться данные любого другого формата, а MIDI-формат может использоваться только для обработки партитур, без вывода на устройство синтеза.

Аппаратная спецификация MIDI

Интерфейс - старт-стопный последовательный "токовая петля" (активный передатчик, 5 мА, токовая посылка - 0, бестоковая - 1), скоростью передачи 31250 ±1% бит/с и протоколом 8-N-1 (один стартовый бит, 8 битов данных, один бит стопа, без четности). Передатчики и приемники должны обеспечивать длительность фронтов менее 2 мкс.

Каждый инструмент имеет три соединительных разъема: In (вход), Out (выход) и Thru (копия сигнала с In через буфер). Все разъемы - типа female DIN-5 (СГ-5), вид с наружной стороны (стороны соединения):

Контакты 4 и 5 - сигнальные, контакт 2 - экран. Полярность сигналов дается относительно источника тока: контакт 4 - плюс (ток вытекает из вывода), контакт 5 - минус (ток втекает в вывод). Таким образом, для разъемов Out и Thru назначение то же, для разъема In - обратное. Для соединения используется двужильный экранированный кабель длиной до 50 футов (около 15 м). Экран необходим только для защиты от излучаемых помех - кабель практически нечувствителен к наводкам извне. Соединение разъемов на двух концах кабеля - прямое (2-2, 4-4, 5-5).

Один MIDI-передатчик допускает подключение до четырех приемников.

Описанная схема позволяет создавать сеть MIDI-устройств, подключая их по цепочке и нескольким направлениям:

В этой схеме устройство 1 служит источником сообщений, которые получает устройство 2 и через его ретранслятор - устройство 3. Устройство 4 получает сообщения, посылаемые устройством 2 (они могут как включать, так и не включать получаемые самим устройством 2) и ретранслирует их на вход устройства 5.

Спецификация формата данных MIDI

MIDI-данные представляют собой сообщения, или события (events), каждое из которых является командой для музыкального инструмента. Стандарт предусматривает 16 независимых и равноправных логических каналов, внутри каждого из которых действуют свои режимы работы; изначально это было предназначено для однотембровых инструментов, способных в каждый момент времени воспроизводить звук только одного тембра - каждому инструменту присваивался свой номер канала, что давало возможность многотембрового исполнения. С появлением многотембровых (multi-timbral) инструментов они стали поддерживать несколько каналов (современные инструменты поддерживают все 16 каналов и могут иметь более одного MIDI-интерфейса), поэтому сейчас каждому каналу обычно назначается свой тембр, называемый по традиции инструментом, хотя возможна комбинация нескольких тембров в одном канале. Канал 10 по традиции используется для ударных инструментов - различные ноты в нем соответствуют различным ударным звукам фиксированной высоты; остальные каналы используются для мелодических инструментов, когда различные ноты, как обычно, соответствуют различной высоте тона одного и того же инструмента.

Поскольку MIDI-сообщения представляют собой поток данных в реальном времени, их кодировка разработана для облегчения синхронизации в случае потери соединения. Для этого первый байт каждого сообщения, называемый также байтом состояния (status byte), содержит "1" в старшем разряде, а все остальные байты содержат в нем "0" и называются байтами данных (data bytes). Если после получения всех байтов данных последнего сообщения на вход приемника поступает байт, не содержащий "1" в старшем разряде - это трактуется как повторение информационной части сообщения (подразумевается такой же первый байт). Такой метод передачи носит название "Running Status" и широко используется для уменьшения объема передаваемых данных - например, передается один байт команды "Controller Change" с нужным номером канала, а затем - серия байтов данных с номерами и значениями контроллеров для этого канала.

MIDI- сообщения делятся на канальные - относящиеся к конкретному каналу, и системные - относящиеся к системе в целом. Кодировка MIDI-сообщений (шестнадцатеричная, n в первом байте обозначает номер канала):

Канальные сообщения:

  • 8n nn vv - Note Off (выключение ноты)
  • 9n nn vv - Note On (включение ноты)
  • An nn pp - Key Pressure (Polyphonic Aftertouch, давление на клавишу)
  • Bn cc vv - Control Change (смена значения контроллера)
  • Cn pp - Program Change (смена программы (тембра, инструмента))
  • Dn pp - Channel Pressure (Channel Aftertouch, давление в канале)
  • En ll mm - Pitch Bend Change (смена значения Pitch Bend)

Системные сообщения:

  • F0 - System Exclusive (SysEx, системное исключительное сообщение)
  • F1 - резерв
  • F2 ll mm - Song Position Pointer (указатель позиции в партитуре)
  • F3 ss - Song Select (выбор партитуры)
  • F4 - резерв
  • F5 - резерв
  • F6 - Tune Request (запрос подстройки)
  • F7 - EOX (End Of SysEx, конец системного исключительного сообщения)
  • F8 - Timing Clock (синхронизация по времени)
  • F9 - резерв
  • FA - Start (запуск игры по партитуре)
  • FB - Continue (продолжение игры по партитуре)
  • FC - Stop (остановка игры по партитуре)
  • FD - резерв
  • FE - Active Sensing (проверка соединений MIDI-сети)
  • FF - System Reset (сброс всех устройств сети)

На основе MIDI позднее был разработан стандарт GM (General MIDI - единый MIDI), устанавливающий условия обязательной совместимости инструментов и интерпретации номеров программ и контроллеров, а затем и другие стандарты (GS, XG), расширяющие GM. Однако общность инструментов внутри каждого стандарта подразумевает только основные звуковые характеристики. "Одинаковые" тембры на различных инструментах почти всегда имеют различную окраску, динамику, яркость, громкость по умолчанию и другие особенности, а "синтетические" тембры могут совершенно отличаться друг от друга. Кроме этого, у разных инструментов различается зависимость характера звука от силы удара по клавише, динамика работы MIDI-контроллеров, положения контроллеров по умолчанию и прочие "тонкие" параметры. Поэтому MIDI-партитура, подготовленная для конкретного инструмента, на других инструментах (даже внутри стандарта) часто звучит совершенно по-другому, и это необходимо учитывать при переносе партитур с между инструментами различных моделей.

Инструменты, поддерживающие стандарты GM и GS, почти всегда имеют дополнительные средства управления синтезом и обработкой звука, расширяющие рамки стандарта. При этом используемые способы управления, как правило, сохраняются внутри одной линии инструментов и внутри инструментов одного производителя.

Описание работы контроллеров

Контроллеры Bank Select

Многие устройства могут работать с большим количеством встроенных и дополнительных тембров (инструментов) и звуковых эффектов, которые для удобства объединены в банки. В каждый момент времени в одном канале может использоваться только один банк; для переключения банков служат контроллеры:

  • 0 - Bank Select MSB (выбор банка, старший байт)
  • 32 - Bank Select LSB (выбор банка, младший байт)

Одни устройства требуют для переключения банков только один из этих контроллеров, другие требуют оба. Поведение некоторых устройств в этом отношении может изменяться в различных режимах работы.

По умолчанию устанавливается нулевой банк. После смены банка обязательна посылка сообщения Program Change для выбора тембра (инструмента).

Обработка устройством команды смены банка и инструмента может занять значительное время (десятки миллисекунд и более). Некоторые устройства при получении команд смены банков и инструментов гасят звучащие ноты в канале.

Контроллер Modulation

Задает глубину частотной модуляции в канале. Управление абсолютное. Значение 0 отключает модуляцию, значение 127 устанавливает максимальную глубину. Стандартное значение - 0. Действует на последующие и уже звучащие ноты.

Контроллер Portamento Time

Задает время плавного скольжения от частоты предыдущей ноты до частоты очередной ноты. Управление абсолютное. Значение 0 соответствует минимальному времени, 127 - максимальному. Стандартное значение не определено.

Контроллер Main Volume

Задает громкость звучания внутри канала. Управление абсолютное. Стандартное значение - обычно 100. Действует на последующие и уже звучащие ноты.

Контроллер Pan

Задает соотношение уровня стереоканалов (точку стереопанорамы) для канала. Управление абсолютное. Значение 0 - крайняя левая позиция, 64 - средняя, 127 - крайняя правая. Стандартное значение - 64. Действует на последующие и уже звучащие ноты.

Контроллер Expression

Задает степень выразительности звука. Управление абсолютное. На простых инструментах дублирует контроллер Main Volume и действует и на последующие, и на уже звучащие ноты. На инструментах с развитым синтезом управляет более тонкими параметрами выразительности, и действует только на последующие ноты. Стандартное значение - обычно 127.

Контроллер Harmonic Content

Задает добротность (глубину резонанса) фильтра канала, позволяющего подчеркнуть высокочастотные гармоники тембра. Увеличение добротности увеличивает крутизну характеристики фильтра в области среза, усиливая частоты, лежащие непосредственно ниже частоты среза. Управление относительное (0..64..127). Стандартное значение - 64.

Контроллер Release Time

Задает время концевого затухания звучания нот с момента отработки Note Off (явного или автоматического) до полного исчезновения звука. Управление относительное (0..64..127). Стандартное значение - 64.

Контроллер Attack Time

Задает время начальной атаки - нарастания громкости звучания нот с момента отработки Note On до максимального значения громкости. Управление относительное (0..64..127). Стандартное значение - 64.

Контроллер Brightness

Задает частоту среза фильтра канала, управляющую ослаблением высоких частот звука. Управление относительное (0..64..127). Стандартное значение - 64.

Контроллер Portamento Control

Задает номер ноты, от которой выполняется плавная перестройка частоты в режиме Portamento, и позволяет установить исходную высоту, отличную от определяемой последним сообщением Note On.

Контроллер Reverb Level

Задает глубину выбранного эффекта типа реверберации (основанного на постоянной задержке сигнала) - Room, Hall, Delay, Echo и т.п. Управление - абсолютное или относительное в зависимости от инструмента.

Контроллер Chorus Level

Задает глубину эффекта типа хорового (основанного на переменной задержке сигнала) - Chorus, Flanger, Phaser и т.п. Управление - абсолютное или относительное в зависимости от инструмента.

Контроллер Variation Level

Задает глубину эффекта, выбранного в качестве Variation. Управление - абсолютное или относительное в зависимости от инструмента.

Контроллер-переключатель Sustain

Во включенном состоянии вызывает удержание звучания для всех клавиш, отпущенных во время действия контроллера - по аналогии с правой педалью фортепиано. Иными словами, в режиме Sustain канал задерживает отработку последнего поступившего для каждой ноты сообщения Note Off. В момент отключения одновременно отрабатываются все задержанные таким образом Note Off; на явно удерживаемые в этот момент клавиши (для которых последним поступившим сообщением является Note On) отключение режима не влияет.

Контроллер-переключатель Sostenuto

Действует подобно Sustain, но удерживает звучание только тех нот, которые были нажаты на момент включения контроллера. Последующие нажатия и отпускания отрабатываются в обычном порядке. Иначе говоря, откладывается отработка Note Off только для тех нот, Note On для которых поступили до включения режима.

Контроллер-переключатель Soft

По аналогии с левой педалью фортепиано, вызывает смягчение звучания для нот, нажатых во время действия режима. Способ реализации - простое уменьшение громкости или более тонкое управление - определяется инструментом.

Контроллер-переключатель Portamento

При выключенном режиме каждая нажатая нота начинает звучать на частоте, определяемой высотой ноты и установленными на данный момент значениями контроллеров управления высотой (Pitch Bend Change и Coarse/Fine Tune и т.п.). При включенном режиме очередная нота начинает звучать на частоте, определяемой последним сообщением Note On или контроллером Portamento Control, затем ее высота плавно изменяется до нужной со скоростью, определяемой контроллером Portamento Time. Вне зависимости от того, было ли скольжение выполнено до конца или прервано по отпусканию ноты, последнее сообщение Note On всегда фиксируется в качестве исходной высоты для последующих нот. Это означает, что если, например, после ноты C2 была нажата нота C7, а затем - нота C4, то высота второй ноты будет плавно повышаться от C2 до C7, а высота третьей в то же время - понижаться от C7 до 50, и в качестве исходной для последующих нот будет принята нота 50. В момент нажатия C7 эта нота зазвучит в унисон с C2 и начнет скользить в сторону C7, а в момент нажатия ноты C4 та зазвучит с высотой C7 и начнет скользить к C4. Все скольжения выполняются независимо.

Контроллеры RPN, NRPN и Data Entry

Дополнительно для расширенного управления синтезом введены зарегистрированные (Registered Parameter Number - RPN) и незарегистрированные (Non-Registered Parameter Number - NRPN) номера параметров, передаваемые при помощи контроллеров:

  • 98 - NRPN LSB (младший байт NRPN)
  • 99 - NRPN MSB (старший байт NRPN)
  • 100 - RPN LSB (младший байт RPN)
  • 101 - RPN MSB (старший байт RPN)

Устройство запоминает однажды переданные ему RPN или NRPN, после которых могут передаваться значения выбранного параметра при помощи контроллеров:

  • 6 - Data Entry MSB (ввод данных, старший байт)
  • 38 - Data Entry LSB (ввод данных, младший байт)
  • 96 - RPN Increment (увеличение RPN на 1, значение игнорируется)
  • 97 - RPN Decrement (уменьшение RPN на 1, значение игнорируется)

Таким образом, механизм представляет собой "контроллер в контроллере". Стандартом General MIDI определена интерпретация только трех RPN, значения которых задаются старшими байтами параметров Data Entry:

  • RPN 0 - Pitch Bend Sensitivity (чувствительность Pitch Bend)
  • RPN 1 - Fine Tuning (точная подстройка)
  • RPN 2 - Coarse Tuning (грубая подстройка)

Чувствительность Pitch Bend определяет количество полутонов, на которое смещается высота тона при получении сообщения Pitch Bend Change с предельным верхним или нижним значением параметра. По умолчанию принимается диапазон в два полутона в любую сторону.

RPN подстройки позволяют сместить строй инструмента в канале на заданное количество полутонов при грубой, или центов (сотых долей полутона) - при точной подстройке. За относительный нуль принимается значение 64.

Интерпретация остальных параметров стандартом GM не определена. В ряде инструментов для раздельной подстройки отдельных инструментов в различных банках используются также два дополнительных RPN:

  • RPN 3 - Tuning Program Select
  • RPN 4 - Tuning Bank Select

Стандартом GS введен набор NRPN для управления генераторами огибающих и резонансными фильтрами (номера NRPN даны в виде значений старшего и младшего байтов):

  • NRPN 1/8 - Vibrato Rate (частота вибрато)
  • NRPN 1/9 - Vibrato Depth (глубина вибрато)
  • NRPN 1/10 - Vibrato Delay (задержка до включения вибрато)
  • NRPN 1/32 - Filter Cutoff Frequency (частота среза фильтра)
  • NRPN 1/33 - Filter Resonance (глубина резонанса фильтра)
  • NRPN 1/99 - Attack Time (длительность атаки)
  • NRPN 1/100 - Decay Time (длительность первичного спада)
  • NRPN 1/102 - Release Time (длительность концевого затухания)

а также - для раздельной настройки параметров ударных инструментов (nn - номер ноты инструмента):

  • NRPN 24/nn - Drum Pitch Coarse Tune (грубая подстройка высоты)
  • NRPN 26/nn - Drum TVA Level (уровень громкости)
  • NRPN 28/nn - Drum Pan (панорамная позиция)
  • NRPN 29/nn - Drum Reverb Send Level (глубина эффекта reverb)
  • NRPN 30/nn - Drum Chorus Send Level (глубина эффекта chorus)
  • NRPN 31/nn - Drum Delay Send Level (глубина эффекта delay)

Значения параметров задаются старшими байтами Data Entry.

Стандартом XG введены дополнительные NRPN для ударных:

  • NRPN 20/nn - Drum Filter Cutoff (частота среза фильтра)
  • NRPN 21/nn - Drum Filter Resonance (глубина резонанса фильтра)
  • NRPN 22/nn - Drum Attack Time (длительность атаки)
  • NRPN 23/nn - Drum Decay Time (длительность первичного спада)
  • NRPN 25/nn - Drum Pitch Fine Tune (точная подстройка высоты)

Специальные канальные сообщения

Задаются контроллерами 120..127 и управляют обработкой сообщений в каналах:

  • 120 - All Sounds Off
  • 121 - Reset All Controllers
  • 122 vv - Local Control
  • 123 - All Notes Off
  • 124 - Omni Off
  • 125 - Omni On
  • 126 nn - Mono
  • 127 - Poly

Обязательными к реализации в General MIDI определены только контроллеры 121 и 123; реализация остальных перечисленных контроллеров определяется производителем. Кроме этого, многие устройства требуют, чтобы неиспользуемые значения контроллеров были нулевыми.

Сообщение All Notes Off имитирует выключение всех включенных нот и полностью эквивалентно посылке сообщения Note Off для каждой звучащей ноты; будет ли при этом прекращено звучание ноты - зависит от состояния режимов Sustain и Sostenuto. Сообщение All Sounds Off действует так же, но не зависит от режимов Sustain/Sostenuto; кроме того, оно немедленно прекращает звучание всех нот, находящихся в стадии концевого затухания (Release). Состояние самих режимов Sustain/Sostenuto эти сообщения не затрагивают.

Сообщение Reset All Controllers устанавливает все контроллеры в значения по умолчанию, и используется для начальной установки устройства перед проигрыванием партитуры.

Сообщение Local Control служит для запрета/разрешения управления устройством с локальной панели. Нулевое значение параметра запрещает управление с панели (устройство управляется только по MIDI), значение 127 разрешает его.

Сообщения Omni On/Off служат для включения/выключения режима Omni - реакции устройства на канальные сообщения. При включенном режиме Omni устройство обрабатывает сообщения для всех каналов, при отключенном - только сообщения для выбранного канала (Basic Channel). Это позволяет разделить устройства между каналами. Канал назначается устройству либо с его панели управления, либо при помощи сообщений SysEx. Режим Omni имеет смысл в основном для старых инструментов, имеющих один MIDI-канал и не поддерживающих разделение тембров.

Сообщения Mono/Poly служат для переключения одноголосного и многоголосного (полифонического) режимов. В одноголосном режиме в каждый момент времени может звучать только одна нота; включение новой ноты приводит к принудительному отключению предыдущей. В полифоническом режиме включение каждой новой ноты запускает очередной свободный генератор, а при исчерпании генераторов новые ноты либо игнорируются, либо приводят к принудительному выключению наиболее "старых" нот.

Значение nn в сообщении Mono воспринимается некоторыми устройствами, как количество MIDI-каналов, по которым, начиная с Basic Channel, распределяются ноты в одноголосном режиме при выключенном режиме Omni. Смысл этой группы каналов различен для передающих и принимающих устройств. Передающее устройство направляет первую ноту в Basic Channel, следующую за ней - в Basic Channel + 1, и так далее, затем очередная нота снова направляется в Basic Channel, и цикл повторяется. Приемное устройство воспринимает канальные сообщения только внутри заданной группы каналов, каждый из которых работает в одноголосном режиме. Такой прием позволяет реализовать многоголосное исполнение на синтезаторах, имеющих жесткую привязку голосов (генераторов) к MIDI-каналам.

Контроллеры Omni, Mono и Poly вызывают также отработку контроллера All Sounds Off.

От различных сочетаний режимов Omni, Poly и Mono происходят четыре основных режиме работы (mode) MIDI-устройств:

  • 1 - Omni On, Poly
  • 2 - Omni On, Mono
  • 3 - Omni Off, Poly
  • 4 - Omni Off, Mono

Большинство современных устройств работает в mode 3 - полифонический режим с независимой работой каналов.

Program Change (pp - номер тембра или инструмента)

Служит для смены инструмента в канале. Параметр задает номер инструмента (0–127) в текущем выбранном банке. Стандартом General MIDI определены 128 основных мелодических и 47 ударных инструментов, собранных в нулевом банке; устройства с расширенным набором инструментов имеют дополнительные банки, а также могут иметь частично измененный основной набор.

Стандартные мелодические инструменты General MIDI разделены на 16 групп по 8 инструментов в каждой группе:

Piano Chrom Percussion
0 Acoustic Grand Piano 8 Celesta
1 Bright Acoustic Piano 9 Glockenspiel
2 Electric Grand Piano 10 Music Box
3 Honky-tonk Piano 11 Vibraphone
4 Electric Piano 1 12 Marimba
5 Electric Piano 2 13 Xylophone
6 Harpsichord 14 Tubular Bells
7 Clavinet 15 Dulcimer
Organ Guitar
16 Drawbar Organ 24 Acoustic Guitar (nylon)
17 Percussive Organ 25 Acoustic Guitar (steel)
18 Rock Organ 26 Electric Guitar (jazz)
19 Church Organ 27 Electric Guitar (clean)
20 Reed Organ 28 Electric Guitar (muted)
21 Accordion 29 Overdriven Guitar
22 Harmonica 30 Distortion Guitar
23 Tango Accordion 31 Guitar Harmonics
Bass Strings
32 Acoustic Bass 40 Violin
33 Electric Bass (finger) 41 Viola
34 Electric Bass (pick) 42 Cello
35 Fretless Bass 43 Contrabass
36 Slap Bass 1 44 Tremolo Strings
37 Slap Bass 2 45 Pizzicato Strings
38 Synth Bass 1 46 Orchestral Harp
39 Synth Bass 2 47 Timpani
Ensemble Brass
48 String Ensemble 1 56 Trumpet
49 String Ensemble 2 57 Trombone
50 Synth Strings 1 58 Tuba
51 Synth Strings 2 59 Muted Trumpet
52 Choir Aahs 60 French Horn
53 Voice Oohs 61 Brass Section
54 Synth Voice 62 Synth Brass 1
55 Orchestra Hit 63 Synth Brass 2
Reed Pipe
64 Soprano Sax 72 Piccolo
65 Alto Sax 73 Flute
66 Tenor Sax 74 Recorder
67 Baritone Sax 75 Pan Flute
68 Oboe 76 Bottle Blow
69 English Horn 77 Shakuhachi
70 Bassoon 78 Whistle
71 Clarinet 79 Ocarina
Synth Lead Synth Pad
80 Lead 1 (square) 88 Pad 1 (new age)
81 Lead 2 (sawtooth) 89 Pad 2 (warm)
82 Lead 3 (calliope) 90 Pad 3 (polysynth)
83 Lead 4 (chiff) 91 Pad 4 (choir)
84 Lead 5 (charang) 92 Pad 5 (bowed)
85 Lead 6 (voice) 93 Pad 6 (metallic)
86 Lead 7 (fifths) 94 Pad 7 (halo)
87 Lead 8 (bass + lead) 95 Pad 8 (sweep)
Synth Effects Ethnic
96 FX 1 (rain) 104 Sitar
97 FX 2 (soundtrack) 105 Banjo
98 FX 3 (crystal) 106 Shamisen
99 FX 4 (atmosphere) 107 Koto
100 FX 5 (brightness) 108 Kalimba
101 FX 6 (goblins) 109 Bagpipe
102 FX 7 (echoes) 110 Fiddle
103 FX 8 (sci-fi) 111 Shanai
Percussive Sound Effects
112 Tinkle Bell 120 Guitar Fret Noise
113 Agogo 121 Breath Noise
114 Steel Drums 122 Seashore
115 Woodblock 123 Bird Tweet
116 Taiko Drum 124 Telephone Ring
117 Melodic Tom 125 Helicopter
118 Synth Drum 126 Applause
119 Reverse Cymbal 127 Gunshot

Стандартные ударные инструменты General MIDI доступны в канале 10:

35 Acoustic Bass Drum 59 Ride Cymbal 2
36 Bass Drum 1 60 High Bongo
37 Side Kick 61 Low Bongo
38 Acoustic Snare 62 Mute High Conga
39 Hand Clap 63 Open High Conga
40 Electric Snare 64 Low Conga
41 Low Floor Tom 65 High Timbale
42 Closed High-Hat 66 Low Timbale
43 High Floor Tom 67 High Agogo
44 Pedal High Hat 68 Low Agogo
45 Low Tom 69 Cabasa
46 Open High Hat 70 Maracas
47 Low-Mid Tom 71 Short Whistle
48 High-Mid Tom 72 Long Whistle
49 Crash Cymbal 1 73 Short Guiro
50 High Tom 74 Long Guiro
51 Ride Cymbal 1 75 Claves
52 Chinese Cymbal 76 High Wood Block
53 Ride Bell 77 Low Wood Block
54 Tambourine 78 Mute Cuica
55 Splash Cymbal 79 Open Cuica
56 Cowbell 80 Mute Triangle
57 Crash Cymbal 2 81 Open Triangle
58 Vibraslap

Pitch Bend Change (ll - младший, mm - старший байт значения)

Задает смещение высоты тона для всех нот в канале - как звучащих, так и последующих. Значение, образованное двумя 7-разрядными величинами, изменяется в диапазоне 0–16383; среднее значение - 8192 - принимается за относительный нуль, что дает условный диапазон изменения -8192–8191. Чувствительность Pitch Bend может изменяться при помощи RPN 0; по умолчанию принимается предельное смещение на два полутона в любую сторону.

Системные сообщения

System Exclusive (SysEx)

Служат для передачи специальной информации определенным устройствам. В сообщении SysEx может передаваться любое количество байтов. Признаком конца сообщения служит байт F7. Первые три байта SysEx обычно содержат идентификатор производителя устройства (присваивается Ассоциацией Производителей MIDI-устройств - MMA), номер устройства в сети (задается с пульта) и код модели устройства (присваивается производителем). В остальном формат сообщений определяется производителем - это могут быть команды, параметры, оцифрованные инструменты, партитуры и т.п.

Шестнадцатеричные идентификаторы наиболее известных производителей:

Sequential Circuits 01
Big Briar 02
Octave / Plateau 03
Moog 04
Passport Designs 05
Lexicon 06
PAIA 11
Simmons 12
Gentle Electric 13
Fairlight 14
Bon Tempi 20
S.I.E.L. 21
SyntheAxe 23
Kawai 40
Roland 41
Korg 42
Yamaha 43

SysEx "General MIDI On" (переключение в режим GM для устройств, поддерживающих дополнительные стандарты): F0 7E 7F 09 01 F7.

SysEx "General Synth On" (переключение в режим Roland GS для устройств, поддерживающих этот стандарт): F0 41 10 42 12 40 00 7F 00 41 F7.

SysEx "XG System On" (переключение в режим Yamaha XG для устройств, поддерживающих этот стандарт): F0 43 1n 4C 00 00 7E 00 F7, где n - номер устройства в сети (устанавливается по-разному для разных устройств, по умолчанию 0).

Ряд устройств требует, чтобы включение режимов GS и XG выполнялось из режима GM. Переключение между режимами обычно занимает несколько десятков миллисекунд и вызывает также полный сброс MIDI-системы устройства.

Tune Request

Предписывает выполнить автоматическую подстройку устройствам, нуждающимся в ней. Обычно это относится к аналоговым синтезаторам, строй которых может смещаться из-за нестабильности управляющих элементов.

Song Position Pointer (ll - младший, mm - старший байт)

Служит для установки позиции в партитуре для устройств, имеющих встроенный секвенсор, автоаккомпанемент или ритм-блок. Задается номером четвертной (quarter) ноты с начала партитуры.

Song Select (ss - условный номер партитуры)

Определяет, какая из существующих партитур будет проигрываться при получении сообщения Start.

Start

Запускает прогрывание или запись выбранной партитуры с начала.

Stop

Останавливает проигрывание или запись партитуры.

Continue

Запускает проигрывание или запись партитуры с прерванного места, либо с позиции, установленной с помощью Song Position Pointer.

Timing Clock

Служит для синхронизации устройств и передается с частотой 6 сообщений на четвертную ноту. Генерация этого сообщения не является обязательной для передающего устройства.

Active Sensing

Используется для проверки наличия связи внутри MIDI-сети. Генерация сообщения не является обязательной для передающих устройств. В случае получения этого сообщения каждое приемное устройство переходит в режим слежения за MIDI-потоком, и в случае отсутствия любых сообщений в течение 300 мс автоматически отрабатывает контроллеры All Notes Off, All Sounds Off и Reset All Controllers. Это позволяет прекратить работу в случае нарушения связи в сети. Однако до первого прохождения этого сообщения по сети устройства не следят за длительностью пауз между сообщениями.

Применения MIDI

Основное применение MIDI - хранение и передача музыкальной информации. Это может быть управление электронными музыкальными инструментами в реальном времени, запись MIDI-потока, формируемого при игре исполнителя, на носитель данных с последующим редактированием и воспроизведением (так называемый MIDI-секвенсор), синхронизация различной аппаратуры (синтезаторы, ритм-машины, магнитофоны, блоки обработки звука, световая аппаратура, дымогенераторы и т.п.).

Устройства, предназначенные только для создания звука по MIDI-командам, не имеющие собственных исполнительских органов, называются тон-генераторами. Многие тон-генераторы имеют панель управления и индикации для установки основных режимов работы и наблюдения за ними, однако создание звука идет под управлением поступающих MIDI-команд.

Устройства, предназначенные только для формирования MIDI-сообщений, не содержащие средств синтеза звука, называются MIDI-контроллерами. Это может быть клавиатура, педаль, рукоятка с несколькими степенями свободы, ударная установка с датчиками способа и силы удара, а также - струнный или духовой инструмент с датчиками и анализаторами способов воздействия и приемов игры. Тон-генератор с достаточными возможностями по управлению может весьма точно воспроизвести оттенки звучания инструмента по сформированному контроллером MIDI-потоку.

Для хранения MIDI-партитур на носителях данных разработаны форматы SMF (Standard MIDI File - стандартный MIDI-файл) трех типов:

  • 0 - непосредственно MIDI-поток в том виде, в каком он передается по интерфейсу.
  • 1 - совокупность параллельных "дорожек", каждая из которых обыч- но представляет собой отдельную партию произведения, исполняемую на одном MIDI-канале.
  • 2 - совокупность нескольких произведений, каждое из которых сос- тоит из нескольких дорожек.

В основном применяется формат 1, позволяющий хранить одно произведение в файле.

Кроме MIDI-событий, файл содержит также "фиктивные события" (Meta Events), используемые только для оформления файла и не передаваемые по интерфейсу - информация о метрике и темпе, описание произведения, названия партий, слова песни и т.п.

Первая часть цикла статей, подробно рассказывающих о протоколе MIDI.

Почти с самого своего рождения протокол MIDI (Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) стал стандартом для всей электромузыкальной промышленности с невиданной до того степенью совместимости. Такой совместимости до сих пор нет даже у электрических лампочек, сетевых и телефонных розеток. Ситуация сейчас такова, что если выпускается электромузыкальное устройство, несовместимое с MIDI, оно обречено быть оторванным от остального мира.

Причина, по которой MIDI на протяжении двадцати лет имеет ошеломляющий успех, проста - протокол был очень тщательно разработан, прежде чем предстать перед публикой. В нем нет "дыр", а требования к аппаратной реализации и взаимодействию устройств четко определены и не могут быть трактованы двояко. Кроме того, MIDI не принадлежит одной компании, а является продуктом целой ассоциации производителей.

Основная предпосылка к появлению MIDI состояла в насущной потребности музыкантов того времени управлять с одной клавиатуры несколькими синтезаторами одновременно. При этом от разработчиков требовалось, чтобы соединение инструментов было простым, а сам интерфейс надежным и недорогим. Сейчас, по прошествии двадцати лет, можно уверенно заявить: эти условия для своего времени были выполнены разработчиками идеально.

Протокол MIDI разрабатывался как простое, недорогое и надежное средство для управления одним синтезатором с другого.

Это нужно вспоминать всякий раз, когда возникают вопросы и недоумения "а почему в MIDI это сделано именно так?". Тем более, вспоминать основное предназначение MIDI нужно перед тем, как критиковать протокол. А критиковали MIDI с самого его рождения и критикуют до сих пор, особенно по поводу слишком медленной передачи данных и ритмической неточности. Тем более в свете современных технологий. Достоинства и недостатки протокола, способы их преодоления и альтернативы MIDI - настолько обширная тема для обсуждения, что этому будет посвящена отдельная статья.

Несмотря на все недостатки, MIDI и сегодня вполне успешно выполняет свое предназначение. И не только - сфера применения протокола давно уже не ограничивается управлением синтезаторами. По MIDI управляются многие процессоры эффектов, микшерные пульты, даже осветительные, пиротехнические приборы и дымовые машины. Что уж говорить о персональных компьютерах и связанной с ними индустрии мультимедиа! Сейчас уже в порядке вещей скачать из интернета MIDI-файл в качестве звонка для мобильного телефона. Не удивлюсь, если в скором времени можно будет скачать MIDI-файл для управления кухонным комбайном…

Мир до MIDI
Середина 60-х - начало 70-х годов прошлого века были временем появления и бурного расцвета электромузыкальных инструментов. На сцене и в студии к уже широко используемым электрогитарам и электроорганам добавился принципиально новый тип музыкальных инструментов - синтезатор. Первые синтезаторы были очень сложны в настройке, перевозке и обслуживании, но они дали музыкантам то, что нельзя было получить никак иначе, - новые, свежие звуки.

Все синтезаторы тех лет были монофонические, то есть могли производить только одну ноту одновременно. Для воспроизведения нескольких звуков или музыкальных партий одновременно приходилось ухищряться. В сущности, были только два способа сделать это: либо использовать несколько синтезаторов (а в случае модульных синтезаторов покупать для каждого голоса отдельный генератор), либо записывать партию каждого голоса на многодорожечный магнитофон.

Синтезаторы в то время были полностью аналоговые, все внутренние их блоки (звуковые генераторы, генераторы огибающей, фильтры) управлялись напряжением. Например, звуковой генератор инструмента при подаче напряжения в 1 В мог давать высоту тона 100 Гц, 2 В - 200 Гц, 3 В - 400 Гц и так далее. Очевидно, что для внешнего управления таким прибором мог использоваться только аналоговый интерфейс. Он имел название CV/Gate. На вход CV подавалось управляющее напряжение (Control Voltage), пропорциональное высоте ноты, на вход Gate - импульс (trigger), от которого стартовала и выключалась нота.

Существовало несколько вариантов CV/Gate-интерфейса. Наиболее широко использовался вариант, предложенный фирмой Roland. В нем CV-напряжение увеличивалось на 1 В при увеличении высоты тона на октаву. Gate-сигнал, называемый Voltage Trigger (V-Trigger), представлял собой положительный импульс с шириной, равной времени удержания ноты в нажатом состоянии. Этот вариант наряду с Roland использовали в своих инструментах фирмы Sequential Circuits и ARP. В синтезаторах Moog использовался другой тип Gate-сигнала, который назывался S-Trigger. Существовали инструменты и с другими параметрами CV/Gate-сигналов. Часто управляющее напряжение изменялось по закону 1,2 В на октаву.

Применялся также сигнал под названием Trigger, представлявший собой короткий импульс. Многие синтезаторы с арпеджиатором имели специальный вход для таких сигналов (clock input). Как только на вход поступал импульс, запускалась очередная нота арпеджио. Генерировали сигнал Trigger многие драм-машины и аналоговые секвенсоры (чаще всего каждую 8-ю или 16-ю ноты, но иногда расстояние между импульсами можно было задавать произвольно). Сигнал Trigger мог быть подан и на вход Gate синтезатора.

Главный недостаток CV/Gate-интерфейса состоял в том, что с помощью него в каждый момент времени можно было управлять извлечением только одной ноты. Для полифонических инструментов необходимо было столько CV/Gate-интерфейсов, сколько голосов полифонии имел инструмент. Кроме того, информация о действиях исполнителя в CV/Gate-системах весьма скудная, практически - это только высота взятой ноты и сам факт ее взятия/снятия.

В середине 70-х компания Oberheim выпустила первый доступный по цене полифонический синтезатор Two Voice. Инструмент был прост в использовании, имел встроенную клавиатуру, полифонию в два голоса и несложный набор органов управления, с помощью которых можно было быстро создавать красивые, богатые звуки. Инструмент имел, в отличие от своих предшественников, небольшие размеры и простой способ программирования. Вскоре после этого начали появляться полифонические инструменты других фирм: Sequential Circuits, Yamaha, Moog, Roland, ARP. Они стали очень популярны в растущей массе электронных музыкантов.

После полифонии, следующим наиболее важным нововведением стала программируемая память. В синтезаторе появился небольшой компьютер, который позволял сохранить в памяти инструмента положение всех ручек и кнопок на передней панели, что открыло новые возможности для живого исполнения. Кроме того, компьютер отслеживал нажатия клавиш и передавал высоту взятых нот на звуковые генераторы. Это как раз и позволило в дальнейшем применить цифровые интерфейсы управления.

До появления памяти каждый инструмент нужно было программировать заранее, а во время концерта он мог производить только один звук. Поэтому на концертах таких музыкантов, как Keith Emerson и Rick Wakeman, можно было увидеть огромные "стеллажи" из клавиатур. Для подготовки всего этого добра к концерту и объединения в рабочий ансамбль требовались часы работы. Когда память стала доступна, один инструмент мог быть запрограммирован на несколько звуков, а нужный звук выбирался нажатием одной кнопки прямо во время концерта.

Но сколько разных синтезаторов - столько характеров. Одни производили замечательные звуки трубы, другие - звуки струнных, третьи - спецэффекты. Музыкантам хотелось взять лучшее с каждого инструмента и получить единую, прекрасно звучащую систему.

В то время была распространена техника игры на двух клавиатурах одновременно, что позволяло создавать многослойные звуки. Например, одну и ту же партию можно было играть обеими руками, правой рукой на инструменте, который силен в струнных, левой - на инструменте с прекрасной секцией медных духовых. Это было довольно сложно, разрабатывалась даже своя техника игры под систему из конкретных моделей синтезаторов.

Все эти приемы служили одной цели - выжать максимум из новых инструментов. Наслоение звуков различных синтезаторов стало одним из исполнительских приемов, визитной карточкой многих музыкантов того времени.

В конце 70-х годов в синтезаторах начала широко применяться цифровая электроника, что было вызвано удешевлением микропроцессоров и массовым производством интегральных схем. Многие блоки синтезаторов было выгоднее производить из компактных, дешевых и более стабильных во времени цифровых компонентов. Естественно, вопрос об управлении инструментами возник с новой силой: аналоговые CV/Gate интерфейсы совсем уже не подходили под новые цифровые технологии формирования звука. В результате, в начале 80-х синтезаторы стали оснащаться цифровым интерфейсом.

Появились такие инструменты, как Oberheim OB-X (1981) и Rhodes Chroma (1982), которые могли быть подсоединены к другому инструменту той же модели и фирмы. Например, Oberheim OB-X можно было подключить к другому Oberheim OB-X (всего до трех инструментов одновременно). Когда музыкант играл на клавиатуре одного из них, оба инструмента звучали одновременно. Это был огромный прогресс - ведь для получения многослойных звуков можно было играть на одной клавиатуре. Однако главная проблема по-прежнему не была решена: как соединить друг с другом инструменты разных производителей и разных моделей.

Herbie Hancock, например, пытался решить этот вопрос собственными силами. Он дорабатывал свои синтезаторы цифровыми интерфейсами, выполненными на заказ. И они работали!

В то же время все больше и больше музыкантов обращалось к производителям синтезаторов с просьбой сделать для них собственный цифровой интерфейс. Масло в огонь подлило и появление первых цифровых секвенсоров, таких как Roland MC 4 Micro Composer и Oberheim DSX. Если бы инструменты разных производителей были совместимыми, музыкант мог бы "забить" партии в эти секвенсоры, а потом воспроизвести, используя целую группу синтезаторов. Но, увы...

Незадолго до появления MIDI фирма Roland разработала цифровой интерфейс DCB, который использовался только в двух синтезаторах (Juno 60 и Jupiter 8) и секвенсоре MSQ 700. Интерфейс DCB обеспечивал базовые возможности по извлечению звуков посредством команд взятия и снятия ноты.

Нужно отметить, что наряду с попытками соединения синтезаторов друг с другом, еще в 60-х годах предпринимались попытки подключения синтезатора к компьютеру. Но они не приводили к заметным практическим результатам из-за колоссальной стоимости компьютеров. В конце 70-х - начале 80-х существовало несколько несовместимых между собой интерфейсов, производимых кустарно или мелкими фирмами. Только разработчик такой компьютерной системы мог написать программное обеспечение для нее. Обычно подобные системы создавались путем добавления в компьютер специальных плат, которые либо напрямую генерировали звук (сравните с современными виртуальными синтезаторами!), либо генерировали несколько каналов управляющего напряжения для модульных синтезаторов.

Рождение MIDI
Итак, к началу 80-х годов прошлого века потребность создания универсального интерфейса была осознана многими ведущими производителями. Задача стояла такая: разработать стандарт передачи действий исполнителя в цифровой форме между всеми типами электромузыкальных инструментов. Первый обмен мнениями на эту тему, в котором участвовали Ikutaro Kakehashi (президент Roland), Tom Oberheim (Oberheim) и Dave Smith (президент Sequential Circuits), произошел в июне 1981 года на выставке NAMM.

Dave Smith начал работу с изучения литературы по компьютерным сетям. При разработке сетевых протоколов составлялись две спецификации - аппаратного соединения устройств и формата передаваемых по сети сообщений. При этом внутренняя работа компьютера оставалась обособленной, он представлялся для других участников сети чем-то вроде "черного ящика", который реагировал на сообщения в соответствии со стандартом. Такой подход был выбран и для соединения музыкальных инструментов. В результате удалось избежать зависимости языка общения инструментов от их устройства. Это основной принцип MIDI, и он остался с тех пор неизменным. Именно благодаря ему протокол продолжает свою непомерно долгую, по компьютерным меркам, жизнь.

К осени 1981 года Smith подготовил первую версию своего протокола под названием USI (Universal Synthesizer Interface). В октябре того же года на выставке в Японии произошла встреча представителей фирм Sequential, Roland, Korg, Yamaha и Kawai, на которой USI была представлена японцам, а в ноябре на конгрессе AES в Нью-Йорке Dave Smith официально представил спецификацию. Японские производители работали в то время над собственным стандартом, который был сложнее USI.

В январе 1982 года на выставке NAMM фирма Sequential Circuits организовала встречу, которую посетили большинство производителей синтезаторов. На встрече выяснилось, что остальные американские компании по разным причинам не хотят участвовать в создании единого интерфейса. После встречи, Sequential Circuits и японские фирмы (Roland, Korg, Yamaha, Kawai) решили продолжать совместную работу независимо от остальных. Пять месяцев спустя, на июньской выставке NAMM были представлены плоды этой международной разработки. Пришло время для официального названия интерфейса. USI было отвергнуто, поскольку слово "universal" (универсальный, всеобщий) могло вызвать юридические проблемы. Японцы предложили UMII (Universal Music Instrument Interface). Но поскольку это название также содержало слово "universal", Dave Smith предложил исправить его на MIDI, с чем все и согласились.

В октябре 1982 года была закончена предварительная спецификация MIDI. В декабре вышел Sequential Circuits Prophet 600 - первый синтезатор, оборудованный MIDI-интерфейсом. А в январе 1983 года на выставке NAMM произошло соединение Prophet 600 и Roland Jupiter 6 по MIDI. В марте появился Roland JX 3 P, а в июне - Yamaha DX 7.

До появления MIDI синтезаторы состояли из двух компонентов в "одном флаконе". Первый компонент - система звукообразования, которая фактически производила звук. Второй компонент - контроллер, обычно клавиатура, которая служила для преобразования действий исполнителя в напряжение и ток, то есть в язык, понятный первому компоненту. Этому процессу даже придумали имя - "захват исполнительских штрихов".

Протокол MIDI сделал различие между двумя компонентами явным, по сути - разорвал их взаимосвязь. Теперь любой контроллер мог управлять любым звуковым генератором. Это имело огромное психологическое значение - музыкант мог свободно подбирать необходимое оборудование, без боязни, что оно устареет через полгода, как это происходит с другими электронными устройствами.

Хотя фирмы совместно работали над MIDI, на рынке они по-прежнему являлись конкурентами. Поэтому некоторые фирмы добавляли собственные спецификации к MIDI, в отдельных случаях неверно интерпретируя существующие параметры (как по недоразумению, так и умышленно), в то время как все не связанные с MIDI компании критиковали этот интерфейс. В то же время фирмы, связанные с MIDI, не могли раскрыть конкурентам все тайны. Например, Sequential Circuits планировали выпуск мультитембрального инструмента (Six-Trak) и предлагали внести необходимые для этого возможности в спецификации, но меньше всего хотели, чтобы об их планах узнали японские производители.

Тем не менее, было необходимо скоординировать работы по MIDI инструментам, и в середине 1983 года в Японии был сформирован комитет по MIDI-стандартам (JMSC). В августе того же года была обнародована спецификация MIDI 1.0. Также в 1983 году была сформирована международная группа пользователей MIDI (IMUG - International MIDI Users Group), которая впоследствии превратилась в IMA - международную MIDI-ассоциацию. Однако она представляла пользователей, а не производителей, и не могла оказывать на них серьезное влияние. Поэтому в июне 1984 года была сформирована ассоциация MIDI-производителей (MMA - MIDI Manufacturers Association).

Организации MMA и JMSC совместно занимаются всей деятельностью по стандартизации и расширению протокола MIDI. Любой зарегистрированный член этих организаций может предложить свое дополнение в протокол, после чего оно будет вынесено на голосование.

1983 - 2003
Протокол MIDI открыл огромные возможности компьютерного синтеза и управления звуком. Компьютеры начали использоваться в качестве средства управления синтезаторами (в качестве секвенсора или программы-композитора, производящей управляющие воздействия на основе специальных алгоритмов).

В 1984 году Jim Miller выпустил программу Personal Composer для IBM PC, которая представляла собой MIDI-секвенсор и позволяла распечатывать ноты. Фирмы Passport Designs и Sequential Circuits представили четырех- и восьмидорожечные программы-секвенсоры для компьютеров Apple II и Commodore 64. Фирма Roland выпустила гитарный MIDI-контроллер GR 700, а также синхронизатор и SMPTE-интерфейс SBX 80, который произвел революцию в деле синхронизации драм-машин и секвенсоров с аналоговыми магнитофонами. Yamaha представила цифровую задержку D 1500 - первый процессор эффектов, пресеты которого можно было менять посредством MIDI-сообщения Program Change. В приборе Emulator II фирмы Emu впервые сочетаются MIDI-, SMPTE- и компьютерное управление.

1985 год ознаменовался захватом европейского рынка компьютерами Atari, имеющими встроенные MIDI-порты. Фирмы MOTU и Opcode выпускают программные MIDI-секвенсоры под Macintosh. В это же время Yamaha разрабатывает аппаратный секвенсор QX 1 с памятью на 80000 нот и возможностью редактирования списка MIDI-событий. В следующем году компьютеры PC начинают завоевывать рынок. Для PC появляется множество программ, использующих MIDI. Фирма Lexicon выпускает ревербератор PCM 70 - первый процессор эффектов, параметрами пресетов которого можно управлять по MIDI.

Сам протокол также не стоит на месте. Разработанный с учетом на дальнейшее расширение, он пополняется новыми возможностями. В марте 1987 года добавлен MIDI Time Code (синхросигнал для взаимодействия MIDI-устройств с магнитофонами и другим оборудованием, работающими с таймкодом SMPTE), в мае 1987 - Sample Dump Standard (протокол передачи семплов по MIDI). В декабре 1988 появляется сообщение Reset all controllers (обнулить все контроллеры), в апреле 1990 - сообщение Bank Select (выбор банка).

В 1990 году фирма Opcode выпускает MIDI-аудиосеквенсор Studio Vision для Macintosh, а также программу Galaxy - универсальный редактор/библиотекарь MIDI-устройств. В мае 1991 протокол пополняется сообщением All sounds off (снять все звуки), в июле 1991 - командами управления световыми и пиротехническими приборами MIDI Show Control, а также форматом стандартных MIDI-файлов (SMF - Standard MIDI Files) для платформо-независимого хранения и обмена данными секвенсоров. В октябре 1991 появляется стандарт General MIDI, в котором определены некоторые минимальные требования к GM-совместимым устройствам и названия звуков закреплены за номерами пэтчей. Появляется и первый GM-совместимый звуковой модуль Roland SC 55 Sound Canvas. Фирма Opcode выпускает MIDI-расширение OMS (Opcode Music System) для операционной системы компьютера Macintosh.

В декабре 1991 выходит MIDI Tuning Specification - способ тонкого управления строем инструментов. В январе 1992 протокол MIDI окончательно интегрируется в студию звукозаписи - появляется стандарт MIDI Machine Control, который позволяет управлять по MIDI транспортными функциями записывающих устройств.

С приходом Microsoft Windows 3.1 у пользователей PC появляется поддержка MIDI на уровне операционной системы. Выходит программа Cakewalk для Windows, программа Cubase, ранее выпускавшаяся для Atari и Macintosh, становится доступна на PC. 1993 год - начало бума мультимедиа. Для PC появляются звуковые платы с MIDI-интерфейсом. MIDI-технология активно эксплуатируется в двух секторах рынка: профессиональном и любительском.

Начинают свое развитие виртуальные студии на базе персонального компьютера. Виртуальные синтезаторы, процессоры эффектов и другие программы взаимодействуют по MIDI с внешним миром (и даже друг с другом, внутри одного компьютера, соединяясь виртуальным MIDI-кабелем).

В мае 1996 года выходит спецификация Downloadable Sounds (DLS) Level 1, которая позволяет дополнять собственными звуками наборы имеющихся в устройстве пэтчей General MIDI.

За последние пять лет организация MMA выпустила более десятка новых спецификаций. Январь 1998 - SMF Lyrics Specification (текст к песням в стандартных MIDI-файлах), январь 1999 - MIDI Tuning Bank and Dump Extensions (новые сообщения для тонкой подстройки инструментов) и спецификация DLS Level 1 версии 1.1, июнь 1999 - SMF Language and Display Extensions (хранение и отображение символов в MIDI-файлах), сообщения SMF Device Name and Program Name (воспроизведение MIDI-файла на нескольких устройствах одновременно), ноябрь 1999 - General MIDI 2.

В феврале 2000 года предложен новый формат RMID, который позволяет объединить в одном файле данные стандартного MIDI-файла и DLS-файла. В октябре 2000 – MIDI Media Adaptation Layer for IEEE-1394 (способ передачи MIDI-сообщений по протоколу FireWire), в августе 2001 – спецификация DLS Level 2.1, в ноябре 2001 – General MIDI Lite (для мобильных применений и портативных устройств), а также спецификация XMF (eXtensible Music Format), которая предлагается взамен формата RMID.

Последним дополнением (май 2002) является Scalable Polyphony MIDI Specification - способ, позволяющий воспроизводить один и тот же MIDI-файл максимально корректно вне зависимости от доступной полифонии.

Несмотря на все эти добавления, MIDI спецификация по-прежнему имеет версию 1.0.

Основы
MIDI - это протокол связи между устройством управления, генерирующим команды, и подчиненным устройством, выполняющим эти команды. Если очень сильно сузить это определение, то можно привести типичный пример: MIDI позволяет исполнителю нажать клавишу на одном инструменте, а получить при этом звук другого или даже нескольких. Любые воздействия исполнителя на органы управления (нажатие клавиш, педалей, изменение положений регуляторов и т. п.) могут быть преобразованы в команды, которые можно передать по MIDI-кабелю на другие инструменты. Эти инструменты, получая команды, обрабатывают их так же, как и при воздействии на их собственные органы управления.

На самом деле протокол MIDI не конкретизирует состав взаимодействующих устройств и не требует наличия живого исполнителя. Суть протокола в том, что в некой системе, состоящей из нескольких устройств, одно устройство (мастер) генерирует команды управления, а все другие устройства (подчиненные) выполняют эти команды. Если подчиненные устройства являются источниками звука (синтезаторы, звуковые модули, семплеры, драм-машины, одним словом, тон-генераторы), то они управляются командами, связанными со звукообразованием: например, "взять ноту До первой октавы" или "переключить тембр на номер 5". Если подчиненные устройства выполняют другие функции, например, обработку аудиосигнала, то и команды для них будут несколько иными. Как бы там ни было, прибор, получает команды управления через свой MIDI-вход (MIDI In).

В качестве мастер-устройства может выступать любой прибор, имеющий MIDI-выход (MIDI Out) и способный посылать на этот выход команды управления. Мастер-устройства можно разделить на два типа: устройства, на которые непосредственно воздействует исполнитель (например, синтезатор) и устройства, которые генерируют управляющие команды автоматически (без участия исполнителя), на основе ранее введенных данных. Типичным примером устройства последнего типа является секвенсор.

Секвенсор напоминает магнитофон, только записывает он не звук, а команды управления, и не на ленту, а в память компьютера (в широком смысле слова, это может быть и встроенный компьютер синтезатора). Секвенсор позволяет записать действия исполнителя (включая динамику исполнения, стиль, штрихи и т. п.), а затем воспроизвести их в первозданном виде, точно так же, как если бы исполнитель снова сел за инструмент и сыграл то же самое. Кроме того, в секвенсоре можно редактировать записанную информацию способами, невыполнимыми на магнитофоне: транспонировать партии или отдельные ноты, изменять ритмическую позицию событий или тембр, которым синтезатор будет воспроизводить партию.

Протокол MIDI разрабатывался для управления синтезаторами, а в них, как известно, самый главный орган управления - клавиатура. Неудивительно поэтому, что разработчики MIDI для описания действий исполнителя выбрали принцип клавишного инструмента.

MIDI является выраженным клавишно-ориентированным протоколом.

Это не означает, что управлять тон-генератором можно только с клавиатуры - существуют множество других способов ввода, например, электронные пэды и целые ударные установки, гитарные или духовые контроллеры (о них мы поговорим отдельно и более подробно). Однако, какое бы средство ввода не использовалось, сообщения от него преобразуются в клавишно-ориентированные.

Приемы звукоизвлечения, нехарактерные для клавишного инструмента, могут быть лишь сымитированы средствами MIDI с той или иной степенью достоверности.

Коммутация
Как же соединяются устройства в MIDI? Представим себя на месте разработчиков. У нас есть два синтезатора, и мы хотим, чтобы при нажатии клавиши на одном из них второй синтезатор сыграл ту же ноту, но своим звуком. Очевидно, для этого нужно сделать на первом синтезаторе выходной MIDI-разъем, а на втором - входной MIDI-разъем и соединить инструменты MIDI-кабелем. Первый синтезатор при нажатии клавиши должен генерировать сообщение о взятии ноты и посылать его на свой выход, а второй синтезатор - получать это сообщение через вход и воспроизводить звук (рис. 3).



Подключение MIDI-клавиатуры к звуковой карте, установленной в компьютер, осуществляется посредством MIDI-интерфейса. Для того чтобы выполнить необходимые соединения, совсем не обязательно вызывать специалиста. Вы в состоянии сделать это сами. А все, что необходимо знать о MIDI-интерфейсе, вы сейчас прочтете.

Musical Instrument Digital Interface (MIDI)

Начнем со слова "интерфейс". Интерфейс (Interface) - система унифицированных связей и сигналов, посредством которых устройства или программы взаимодействуют между собой.

Musical Instrument Digital Interface (MIDI) - цифровой интерфейс музыкальных инструментов. Стандарт на интерфейс создан ведущими производителями музыкальных инструментов: Yamaha, Roland, Korg, E-mu и др.

Различают аппаратный MIDI-интерфейс и формат MIDI-данных. Аппаратный интерфейс используется для физического соединения источника и приемника сообщений, формат данных - для создания, хранения и передачи MIDI-сообщений. Вопросы, связанные с форматом данных, мы рассмотрим в разд. 1.2, а сейчас познакомимся с аппаратной составляющей MIDI-интерфейса.

MIDI-интерфейс - это старт-стопный последовательный асинхронный интерфейс "токовая петля".

Словосочетание "старт-стопный" означает, что в каждом передаваемом сообщении обязательно должны содержаться признаки того, что процесс передачи начат (сигнал "Старт") и завершен (сигнал "Стоп").

В последовательном интерфейсе двоичные данные передаются не одновременно, а поочередно (последовательно).

Асинхронность интерфейса состоит в том, что начало передачи данных в нем не привязано к какому-либо определенному моменту времени. Передача осуществляется тогда, когда в этом возникает необходимость. Нажали на клавишу - в интерфейсе появилось сообщение об этом. Передающая сторона интерфейса активна, на ней имеется источник тока и коммутирующий элемент (в конечном счете, выключатель), а приемная - пассивна, на ней расположен только прибор-приемник тока. Принцип токовой петли заключается в том, что как только цепь выключателя будет замкнута, ток через нее потечет от положительного полюса источника (на передающей стороне) через "прямой" соединительный проводник кабеля, далее через приемник тока (на приемной стороне) и по "обратному" проводнику кабеля возвратится на приемную сторону ("втечет" в отрицательный полюс источника). Вот вам и токовая петля. Проходя сквозь приемник, ток выполнит предписанную ему роль: приведет в действие чувствительный элемент, в результате чего в приемнике и будет зафиксирован пришедший сигнал.

Структура элементарного MIDI-сигнала

Активный передатчик формирует токовую посылку с силой тока 5 мА. Токовая посылка соответствует логическому нулю, бестоковая - логической единице. Структура элементарного MIDI-сигнала (рис. 1.1) характеризуется следующими признаками: 7 битов данных, один бит (старший) статусный, один бит старта, один бит стопа. Проверка на четность отсутствует.

Вы видите, что столовый бит - единичный, а не нулевой. То есть в состоянии "Стоп" ток в цепи не течет. Это очень разумно. Экономится энергия и ресурсы элементов интерфейса. Ведь основную часть времени в M1DI-системе никаких событий не происходит: в среднем протяженность пауз значительно больше, чем протяженность тех интервалов времени, когда вы играете на MIDI-клавиатуре. Правда, ток может отсутствовать в цепи не только потому, что нет сообщений, но и из-за ее обрыва. Для своевременного выявления неисправного состояния MIDI-сети предусмотрена периодическая передача специального тестового сигнала. Если по прошествии определенного времени приемник его не обнаружит, то это будет считаться аварией, после чего MIDI-система отработает заранее обусловленную последовательность действий.

Рис. 1.1.Структура элементарного MIDI-сигнала:

Пропускная способность MIDI-канала 3,125 кбайт/с. Команды могут быть одно-, двух- и трехбайтными. Первый байт - статусный. Он определяет действие команды. За ним могут следовать 1 - 2 байта данных. Старший бит статусного байта 1, а байта данных - 0.

Соединительные MIDI-разъемы и MIDI-кабель

Полноценное MIDI-устройство имеет три соединительных разъема: MIDI In (вход), MIDI Out (выход) и MIDI Thru (на разъем MIDI Thru через буфер ретранслируется копия сигнала, поступающего с внешнего MIDI-устройства на вход MIDI In). Все разъемы - пятиконтактные. Контакты 4 и 5 - сигнальные, контакт 2 - экран. Полярность сигналов определяется относительно источника тока: контакт 4 - плюс (ток вытекает из вывода), контакт 5 - минус (ток втекает в вывод). Таким образом, для разъемов MIDI Out и MIDI Thru назначение контактов одно и то же, для разъема MIDI In - обратное.

Рис. 1.2. Схема распайки разъемов MIDI-кабеля:

Для соединения используется двужильный экранированный кабель. Соединение разъемов на двух концах кабеля - прямое (2-2, 4-4, 5-5). Схема распайки разъёмов MIDI-кабеля представлена на рис. 1.2.

Принцип соединения MIDI-устройств

Принцип соединения двух MIDI-устройств показан на рис. 1.3. Контакт передатчика, с которого во внешнюю цепь снимается сигнал, называется MIDI TXD (Transmitter Data). Контакт приемника, на который из внешней цепи должен поступать сигнал, - MIDI RXD (Receiver Data).

Рис. 1.3. Принцип соединения двух MIDI-устройств:

Аппаратная часть интерфейса MIDI замечательна тем, что разработчики предусмотрели в ней несколько мер, направленных на снижение уровня шума и помех. К простейшим, но достаточно эффективным мерам относится обязательное экранирование кабелей, соединяющих MIDI-устройства. Экран представляет собой проволочную оплетку, которая защищает проводники от проникновения в них электромагнитных волн, несущих помехи. И, что не менее важно, экран предотвращает излучение электромагнитных волн в окружающее пространство самим MIDI-кабелем. Посредством экрана помехи не проникают с одного инструмента на другой, так как в соответствии со стандартом MIDI исключено электрическое соединение экрана с корпусами одновременно двух MIDI-устройств. Самое главное, помехи не могут попасть с одного инструмента на другой еще и потому, что даже сигнальные провода не имеют непосредственной (говорят: гальванической) связи одновременно и с прибором-передатчиком, и с прибором-приемником MIDI-сообщений. Разумеется, здесь нет парадокса: если по проводам передается информация, значит, связь есть, но эта связь в действительности не гальваническая, а оптическая. Во входной цепи интерфейса MIDI включена пара оптоэлектронных приборов. Светодиод начинает светиться, когда по кабелю передается логический ноль, и гаснет, если передается логическая единица. Свет направлен на фотодиод, ток через который тем сильнее, чем сильнее этот прибор освещен. Цепочка преобразования сигналов такова: электрический ток - свет - электрический ток. Таким способом создается непреодолимое препятствие на пути протекания токов, несущих в себе помехи (величины этих токов недостаточно, чтобы светодиод стал излучать свет), в то же время цифровые сигналы проходят совершенно свободно.

Стандартом предусмотрено, что в сети MIDl-устройств в одно и то же время только одно из них может быть передатчиком MIDI-сообщений, а все остальные - только приемниками. Один MIDI-передатчик допускает подключение до четырех приемников. На рис. 1.4 представлен вариант подключения MIDI-устройств к MIDI-интерфейсу звуковой карты, установленной в компьютер.

Рис. 1.4. Подключение MIDI-устройств к звуковой карте:

MIDI-сигналы в разъеме игрового порта звуковой карты

Следует заметить, что у звуковых карт, как правило, отсутствуют стандартные MIDI-разъемы. Это связано с тем, что габариты не позволяют разместить их в прорезях на задней стенке компьютера, предназначенных для закрепления плат расширения. "Полуфабрикаты" MIDI-сигналов (MIDI RXD и MIDI TXD) выводятся на контакты разъема игрового порта (рис. 1.5).

Для правильной ориентации в номерах контактов нужно учесть, что разъем показан таким, каким он представлялся бы наблюдателю, сидящему внутри компьютера. Не очень удобная точка наблюдения, но именно ей соответствует рисунок, обычно приводимый в описании звуковой карты. Чтобы не запутать вас, на рис. 1.5 мы не стали менять направления взгляда.

Рис. 1.5. Назначение некоторых контактов разъема игрового порта:

Большинство контактов предназначено для подключения джойстика, однако, они нас сейчас не интересуют. Обратите внимание на следующие контакты:

  • 4, 5 - соединенные с общим проводом блока питания компьютера или, как иногда говорят, с корпусом, с землей (на схемах это соединение обозначают GND);
  • 1, 8, 9 - соединенные с выводом +5 В источника питания компьютера;
  • 15 - на который из внешних цепей должен поступать сигнал MIDI RXD (Receiver Data);
  • 12 - с которого во внешнюю цепь снимается сигнал MIDI TXD (Transmitter Data).
Наличие контактов 12 и 15, а также соответствующих им сигналов позволяет производителям и продавцам утверждать, что данная звуковая карта снабжена интерфейсом MIDI. Однако на деле сигналы MIDI TXD и MIDI RXD следует рассматривать как полуфабрикаты настоящих MIDI-сигналов. С их помощью можно принимать и передавать информацию, представленную стандартными для компьютеров значениями напряжения (говорят, уровнями транзисторно-транзисторной логики - TTL). И даже если заменить один из пятиконтактных разъемов MIDI-кабеля на разъем, соответствующий тому, что изображен на рис. 1.8, то подключить через этот кабель синтезатор к звуковой карте не удастся. Дело в том, что сигнал MIDI TXD не будет правильно восприниматься светодиодом, с помощью которого в интерфейсе MIDI передают полезные сигналы и прерывают гальваническую связь MIDI-устройств друг с другом.

Для подключения звуковой карты к MlDI-устройствам необходим переходной кабель-адаптер, содержащий оптронную развязку. При соединении MIDI-устройств нужно придерживаться несложного правила: кабель не должен соединять одноименные разъемы двух устройств, т. е. нельзя соединять MIDI Out одного устройства с MIDI Out другого, также MIDI In с MIDI In. Однако если вы случайно ошиблись, ничего страшного не случится: в схеме MIDI-интерфейса есть необходимая защита.

А вот один кабель или два следует протягивать между MlDI-устройствами, зависит от того, что это за устройства и в каких целях они используются.

Сначала рассмотрим наиболее вероятную ситуацию. Допустим, вы приобрели MIDI-клавиатуру и хотите подключить ее к звуковой карте, воспользовавшись MIDI-интерфейсом. Нет ничего проще, однако прежде необходимо разобраться, чем же отличается MIDI-клавиатура от клавишного электронного музыкального инструмента (синтезатора). Последний содержит и клавиатуру, и блок синтеза, поэтому в состоянии самостоятельно формировать звуки. Все современные синтезаторы оснащены MIDI-интерфейсом. MIDI-клавиатура не обладает способностью синтезировать звук. Она предназначена лишь для того, чтобы посредством MIDI-интерфейса управлять работой внешнего (по отношению к ней) синтезатора. Это, прежде всего, наиболее дешевый вариант совместного использования нескольких синтезаторов. В этом случае они могут не иметь собственных клавиатур, чем и определяется их относительно низкая стоимость. Синтезатор, который не имеет собственной клавиатуры, принято называть тон-генератором.

Подключение к звуковой карте MIDI-клавиатуры и MIDI-синтезатора

Вернемся к вопросу о подключении MIDI-клавиатуры к звуковой карте (рис. 1.6). Действительно, сделать это очень просто: в гнездо MIDI Out клавиатуры вставьте вилку MIDI In адаптера, а 15-контактный разъем MIDI-адаптера соедините с разъемом игрового порта, расположенным на звуковой карте. MIDI-клавиатура здесь будет играть роль ведущего MIDI-устройства, а звуковая карта - ведомого.

Рис. 1.6. Подключение MIDI-клавиатуры к звуковой карте:

Если у вас уже имеется современная, с широкими функциональными возможностями звуковая карта и вы хотите исполнять музыку не с помощью мыши, а проверенным дедовским способом, перебирая белые и черные клавиши, то MIDI-клавиатура - это выход из положения. Заметим, что в продаже имеются музыкальные синтезаторы с клавиатурой и MIDI-интер-фейсом. Некоторые из них (относительно простые) немногим дороже MIDI-клавиатур. В режимах исполнения и записи композиции синтезатор можно использовать в качестве MIDI-клавиатуры. Для этого следует выполнить такое же соединение, как и в случае подключения MIDI-клавиатуры: MIDI Out синтезатора соединить с входом MIDI In адаптера.

При проигрывании композиции внешний синтезатор с клавиатурой можно использовать как дополнение к звуковой карте и извлекать из него звуки тех инструментов, которые отсутствуют в палитре звуковой карты. Для реализации этой возможности выход MIDI Out адаптера следует соединить со входом MIDI In синтезатора (рис. 1.7).

Рис. 1.7. Схема подключения внешнего синтезатора к звуковой карте:

Решение проблемы самовозбуждения MIDI-системы

При некорректном выборе режима работы музыкального редактора соединение по схеме, приведенной на рис. 1.7, может вызвать неприятный эффект: поданное с клавиатуры сообщение, например нажатие клавиши, поступит на звуковую карту, а оттуда вновь в синтезатор, а с синтезатора вновь на звуковую карту... И так до бесконечности. Система зациклится, возбудится и перегрузится. Звуки будут слышны неинтересные. Что следует сделать, чтобы избежать этого?

Из рис. 1.7 следует, что оба устройства - и звуковая карта и синтезатор - одновременно оказываются и MIDI-приемниками и MIDI-передатчиками. Это недопустимо. Тривиальный выход - отключить второй кабель на время использования синтезатора в качестве MIDI-клавиатуры и подключить его при воспроизведении записанной ранее мелодии, - крайне неудобен. Все эти отключения, подключения, поверьте, кончатся плохо. Проще и безопасней для аппаратуры и вашего кошелька выполнить необходимую коммутацию на логическом уровне. Делается это или непосредственно в синтезаторе (выключателем Local Off), или в музыкальном редакторе.

Однако было бы правильнее решить проблему зацикливания, манипулируя опциями ретрансляции MIDI-сообщений. Суть дела состоит в том, что MIDI-информация, поступающая на вход устройства (или программы, в нашем случае Cubase SX), транслируется на его выход. Рассмотрим классический пример, когда синтезатор звуковой карты используется совместно с внешним синтезатором, который, в свою очередь, еще и выполняет функции MIDI-клавиатуры. Зацикливание неминуемо возникнет в том случае, если вы выберете трек, у которого в качестве портов ввода/вывода заданы порты, физически подключенные к внешнему синтезатору. Последовательность возникновения нежелательного эффекта зацикливания такова:

1. Вы нажимаете на синтезаторе клавишу, синтезатор воспроизводит соответствующую ноту.
2. MIDI-сообщение типа Note On (см. разд. 1.2.1) поступает в звуковой редактор.
3. В звуковом редакторе, благодаря ретрансляции MIDI-сообщений, это же сообщение передается на входной порт синтезатора.
4. Синтезатор, получив сообщение Note On, отрабатывает его, воспроизводя соответствующую ноту (заметьте, уже не в первый раз).
5. В синтезаторе тоже работает ретрансляция MIDI-сообщений (можно ли ее отключить и как это сделать - ищите в руководстве пользователя), поэтому дальше см. п. 2.

Чтобы разорвать эту цепочку, следует отключить ретрансляцию MIDI-сообщений или в синтезаторе, или в программе (как правило, в музыкальных редакторах эта опция по умолчанию включена). В Cubase SX следует поступить так: откройте меню File , выберите команду Preferences . Откроется диалоговое окно Preferences . В дереве, находящемся в левой части окна, выберите ветвь MIDI. На открывшейся вкладке MIDI сбросьте флажок MIDI Thru Active . Теперь зацикливания не будет. Убедиться в этом можно, нажав ОК , после чего диалоговое окно Preferences закроется. Можно также нажать кнопку Apply , окно Preferences останется открытым, а изменения, внесенные вами, будут применены.

При сброшенном флажке MIDI Thru Active теряется возможность использовать внешний синтезатор в качестве MIDI-клавиатуры для управления встроенным синтезатором звуковой карты.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!