Настройка оборудования и программного обеспечения

Цифровые абонентские линии isdn. Последняя миля средствами Wireless Local Loop История развития сетей абонентского доступа

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Учреждение «Университет «Туран»

УТВЕРЖДЕНО

на заседании кафедры

Радиотехника, электроника и телекоммуникации

Наименование учреждения «Университет «Туран»

Протокол № __ от «___»______ 2012 г.

Заведующий (ая) кафедрой

Вервейкина Л.С.

ЛЕКЦИОННЫЙ КОМПЛЕКС-КОНТЕНТ

(ТЕЗИСЫ ЛЕКЦИЙ, ИЛЛЮСТРАТИВНЫЙ И РАЗДАТОЧНЫЙ МАТЕРИАЛ, СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ)

«Системы абонентского доступа»

Специальность: 5В071900, Радиотехника, электроника и телекоммуникации

Технология обучения: кредитная

Форма обучения: очное/заочное

Языковое отделение: русское

Алматы, 2012

Тема 1. Введение. Основные понятия систем абонентского доступа

В современной телекоммуникационной системе меняется не только роль сети доступа. В большинстве случаев расширяется и территория, в границах которой создается сеть доступа. Для того, чтобы исключить имеющиеся в современных публикациях различия в трактовке места и роли сети доступа, на рисунке 1.1 показана модель перспективной телекоммуникационной системы. Эта модель основана на сетевых структурах, приведенных в публикациях .

1.1 Место сети абонентского доступа в телекоммуникационной системе

Рисунок 1.1

Первый элемент телекоммуникационной системы представляет собой совокупность терминального и иного оборудования, которое устанавливается в помещении абонента (пользователя). В англоязычной технической литературе этот элемент телекоммуникационной системы соответствует термину Customer Premises Equipment (CPE).

Второй элемент телекоммуникационной системы и есть, собственно, предмет данной монографии. Роль сети абонентского доступа состоит в том, чтобы обеспечить взаимодействие между оборудованием, установленным в помещении абонента, и транзитной сетью. Обычно в точке сопряжения сети абонентского доступа с транзитной сетью устанавливается коммутационная станция. Пространство, покрываемое сетью абонентского доступа, лежит между оборудованием, размещенном в помещении у абонента, и этой коммутационной станцией.

В ряде работ, например в , сеть абонентского доступа делится на два участка - нижняя плоскость рисунка 1.1. Абонентские линии (Loop Network) можно рассматривать как индивидуальные средства подключения терминального оборудования. Как правило, этот фрагмент сети абонентского доступа представляет собой совокупность АЛ. Сеть переноса (Transfer Network) служит для повышения эффективности средств абонентского доступа. Этот фрагмент сети доступа реализуется на базе систем передачи, а ряде случаев используются и устройства концентрации нагрузки.

Третий элемент телекоммуникационной системы - транзитная сеть. Ее функции состоят в установлении соединений между терминалами, включенными в различные сети абонентского доступа, или между терминалом и средствами поддержки каких-либо услуг. В рассматриваемой модели транзитная сеть может покрывать территорию, лежащую как в пределах одного города или села, так и между сетями абонентского доступа двух различных стран.

Четвертый элемент телекоммуникационной системы иллюстрирует средства доступа к различным услугам электросвязи. На рисунке 1.1, в последнем эллипсе, указано название на языке оригинала (Service Nodes), которое переведено тремя словами - узлы, поддерживающие услуги. Примерами такого узла могут быть рабочие места телефонистов-операторов и серверы, в которых хранится какая-либо информация.

Приведенную на рисунке 1.1 структуру следует рассматривать как перспективную модель телекоммуникационной системы. Для решения терминологических проблем обратимся к модели, свойственной сетям абонентского доступа аналоговых АТС. Такая модель показана на рисунке 1.2 . Рассматривая существующие местные сети, мы, как правило, будем оперировать двумя терминами - «Абонентская сеть» или «Сеть АЛ». Слова «Сеть абонентского доступа» используются в тех случаях, когда речь идет о перспективной телекоммуникационной системе.

1.2 Модель абонентской сети

Рисунок 1.2

Эта модель справедлива как для ГТС, так и для СТС. Более того, для ГТС приведенная на рисунке 1.2 модель инвариантна к структуре межстанционной связи. Она идентична для:

Нерайонированных сетей, состоящих, по определению , только из одной телефонной станции;

Районированных сетей, которые состоят из нескольких районных АТС (РАТС), соединенных между собой по принципу "каждая с каждой";

Районированных сетей, построенных с узлами входящего сообщения (УВС) или с узлами исходящего сообщения (УИС) и УВС.

Для всех элементов абонентской сети в скобках указаны термины на английском языке, приведенные в . Следует отметить, что термин "линия межшкафной связи" (Link cable) в отечественной терминологии еще не применяется, так как подобные трассы в ГТС и СТС почти не используются.

Модель, иллюстрирующая основные варианты построения абонентской сети, приведена на рисунке 1.3 . На этом рисунке детализированы некоторые фрагменты предыдущей модели.

1.3 Основные варианты построения абонентской сети

Рисунок 1.3

На рисунке 1.3 использован ряд обозначений, редко встречающихся в отечественной технической литературе. Устройство кроссировки кабеля (Cross-connection point) показано как две концентрические окружности. Такой символ часто используется в документах МСЭ. Также типичным можно считать обозначение распределительной коробки (Distribution point) черным квадратом. К новым аббревиатурам, введенным на рисунке 1.3, мы вернемся в следующем параграфе.

Модель, показанная на рисунке 1.3, может считаться универсальной в отношении типа коммутационной станции. В принципе, она одинакова как для ручной телефонной станции, так и для самой современной цифровой системы распределения информации. Более того, данная модель инвариантна к виду интерактивной сети, например телефонной или телеграфной.

С другой стороны, для цифровой коммутационной станции может быть предложена собственная модель, которая позволит точнее отразить специфику сети абонентского доступа. Эта задача достаточно сложна. Проблема состоит в том, что процесс внедрения цифровой коммутационной станции приводит к изменению структуры местной телефонной сети. В ряде случаев это заметно отражается на структуре абонентской сети. Характерный пример подобной ситуации - установка цифровой коммутационной станции, заменяющей несколько старых электромеханических станций. Пристанционный участок цифровой коммутационной станции - при таком способе модернизации местной телефонной сети - фактически объединяет все территории, обслуживавшиеся ранее демонтируемыми электромеханическими АТС. Кроме того, при внедрении цифровой коммутационной станции могут возникать специфические (постоянные или временные) решения, когда некоторые группы удаленных абонентов подключаются за счет использования концентраторов.

Конечно, подобные решения должны обязательно приниматься во внимание на этапе разработки общей концепции модернизации местной телефонной сети. Когда соответствующие концептуальные решения приняты, можно приступать к поиску оптимальных вариантов построения сети абонентского доступа. Для гипотетической цифровой коммутационной станции эти варианты представлены на рисунке 1.4. Два последних рисунка (1.3 и 1.4) имеют ряд общих моментов.

1.4 Модель сети абонентского доступа для цифровой коммутационной станции

Рисунок 1.4

Во-первых, обе структуры подразумевают наличие так называемой "зоны прямого питания" - анклава, в пределах которого АЛ включаются в кросс непосредственно (без соединения кабелей в распределительных шкафах).

Во-вторых, за "зоной прямого питания" располагается следующая область сети доступа, для которой в цифровой станции целесообразно использовать выносные абонентские модули (концентраторы или мультиплексоры), а для аналоговой АТС - либо неуплотненные кабели, либо каналы, образованные системами передачи.

В третьих, необходимо отметить, что структура абонентской сети - вне всякой зависимости от типа коммутационной станции - соответствует графу с древовидной топологией. Это существенно с точки зрения надежности связи: применение цифровой коммутационной техники не только не повышает коэффициент готовности АЛ, но, в ряде случаев, снижает его из-за введения дополнительного оборудования на участке от кросса АТС до терминала пользователя.

Для составления перечня необходимых далее терминов и, особенно, для установления соответствия между понятиями, принятыми в отечественной практике и документах МСЭ, целесообразно привести структуру сети АЛ, использованную в . Эта структура приведена на верхней части рисунка 1.5, а в его нижней плоскости изображена подобная модель, содержащаяся в .

1.5 Структурная схема и стыки оборудования абонентских линий для ГТС и СТС

Рисунок 1.5

Для структурной схемы АЛ (верхняя часть рисунка 1.5) представлены три варианта подключения абонентского терминала к коммутационной станции.

Верхняя ветка данного рисунка показывает перспективный вариант подключения ТА без использования промежуточного кроссового оборудования. Кабель прокладывается от кросса до распределительной коробки, где посредством абонентской проводки осуществляется подключение ТА.

На средней ветке рисунка изображен вариант подключения ТА по шкафной системе, когда между кроссом и распределительной коробкой размещается промежуточное оборудование. В нашей модели роль такого оборудования отведена распределительному шкафу.

В ряде случаев АЛ организуется с использованием воздушных линий связи (ВЛС). На рисунке 1.5 этот вариант показан на нижней ветке. В такой ситуации на столбе устанавливается кабельный ящик (КЯ) и вводно-выводные изоляторы. В месте размещения распределительной коробки монтируется абонентское защитное устройство (АЗУ), предотвращающее возможное влияние на ТА опасных токов и напряжений. Следует отметить, что организация АЛ или ее отдельных участков за счет строительства ВЛС не рекомендуется; но в ряде случаев - это единственный вариант организации абонентского доступа.

1.6 Перечень основных терминов

Приведенные выше рисунки и соответствующие краткие комментарии позволяют составить следующий перечень терминов, относящихся к сети абонентского доступа:

1. Местная станция (МС), к которой подключаются абонентские линии. Для ГТС - это РАТС. В СТС абоненты включаются в оконечные (ОС), узловые (УС) и центральные (ЦС) станции. В англоязычной технической литературе и для СТС, и для ГТС используется общий термин "местная станция" - Local exchange (LE). Иногда используется еще один термин - Central Office (CO), который также применяется для ГТС и СТС. С чисто технической точки зрения, удобно и в отечественной практике использовать единый термин - МС.

2. АЛ - линия местной телефонной сети, соединяющая оконечное абонентское телефонное устройство с АК оконечной станции, концентратора или иного выносного модуля. В англоязычной технической литературе используется термин Subscriber line или просто Line. В определении, перед словом “устройство”, стоит прилагательное “телефонное”, которое подчеркивает основное назначение АЛ как элемента ТФОП. В настоящее время слова «Оконечное телефонное устройство» часто заменяются более общим термином, инвариантным к виду коммутируемой (вторичной) сети, - «Терминал».

3. Станционный участок АЛ - участок абонентской линии от АК местной станции, концентратора или иного выносного модуля до станционной стороны кросса. В зарубежной технической литературе этот участок АЛ как самостоятельный элемент сети абонентского доступа не рассматривается.

4. Линейный участок АЛ - участок абонентской линии от линейной стороны кросса или вводно-коммутационного устройства оконечной станции, концентратора или иного выносного модуля до розетки (или иного аналогичного элемента) оконечного абонентского устройства телефонной сети. В зарубежной технической литературе этот участок АЛ также не рассматривается как самостоятельный элемент сети абонентского доступа.

5. Магистральный участок АЛ - участок абонентской линии от линейной стороны кросса или вводно-коммутационного устройства местной станции, концентратора или иного выносного модуля до распределительного шкафа, включая участки межшкафной связи. Магистральному участку АЛ соответствует термин "Main cable". Магистральным участком считается также зона прямого питания, в пределах которой для построения абонентской сети распределительные шкафы не используются. Зона прямого питания занимает территорию, примыкающую к телефонной станции в радиусе примерно до 500 метров. В англоязычной технической литературе для обозначения этого участка абонентской сети используются слова "Direct service area".

6. Распределительный участок АЛ - участок абонентской линии от распределительного кабельного шкафа до абонентского пункта. Этому участку АЛ - в зависимости от структуры сети доступа - соответствуют термины "Primary distribution cable" и "Secondary distribution cable". А часть площади, занимаемой распределительным участком, называется обычно "Cross-connection area".

7. Абонентская проводка - участок абонентской линии от распределительной коробки до розетки включения оконечного абонентского телефонного устройства. В англоязычной технической литературе используются два термина:

- "Subscriber"s lead-in" - участок от распределительной коробки до помещения абонента;

- "Subscriber"s service line" - участок от распределительной коробки до телефонного аппарата.

8. Кросс, ВКУ - оборудование стыка станционных и линейных участков абонентских и соединительных линий городских, сельских и комбинированных телефонных сетей. Этот элемент сети доступа в англоязычной технической литературе называется "Main distribution frame"; часто используется аббревиатура MDF.

9. Кабельный распределительный шкаф (ШР) - оконечное кабельное устройство, предназначенное для установки кабельных боксов (с плинтами, без элементов электрической защиты), в которых осуществляются соединения магистральных и распределительных кабелей абонентских линий местных телефонных сетей. Кабельному распределительному шкафу соответствует термин "Cross-connection point". Если АЛ проходит через два ШР, то в англоязычной технической литературе - для второго шкафа - добавляют прилагательное "secondary". Кроме того, если ШР находится в специально оборудованном помещении, то он именуется как "Cabinet". В том случае, когда ШР располагается у стены здания или иного подобного места, он называется "Sub-cabinet" или "Pillar". Эти обозначения обычно указываются в скобках после функционального назначения - "Cross-connection point". В технической литературе используется еще несколько терминов, более или менее соответствующих ШР. Чаще всего встречается слово "Curb".

10. Абонентская распределительная коробка (РК) - оконечное кабельное устройство, предназначенное для осуществления стыка кабельных пар, включенных в плинт распределительной коробки, с однопарными проводами абонентских проводок. Distribution point (DP) - аналог термина "Абонентская распределительная коробка”.

11. Кабельная канализация - совокупность подземных трубопроводов и колодцев (смотровых устройств), предназначенных для прокладки, монтажа и технического обслуживания кабелей связи. Термин "Кабельная канализация" в англоязычной технической литературе используется в двух вариантах: "Duct" или "Cable duct".

12. Колодец (смотровое устройство) кабельной канализации - устройство, предназначенное для прокладки кабелей в трубопроводы кабельной канализации, монтажа кабелей, размещения сопутствующего оборудования и технического обслуживания кабелей связи. Словам «Кабельный колодец» в английском языке эквивалентны два термина: "Jointing chamber" или "Jointing manhole".

13. Кабельная шахта - сооружение кабельной канализации, размещаемое в подвальном помещении телефонной станции, через которое кабели вводятся в здание станции и в котором, как правило, многопарные линейные кабели распаиваются на станционные кабели емкостью 100 пар. Этот термин в английском языке обозначается словами "Exchange manhole".

14. Пристанционный участок - территория, в пределах которой все абонентские линии подключаются к данной МС. В англоязычной технической литературе используется термин "Local exchange area".

15. Цифровой кроссовый узел (ЦКУ) - оборудование для выделения и объединения цифровых каналов и трактов. ЦКУ содержит устройство управления, способное автономно или под воздействием команд из центра технической эксплуатации (ЦТЭ) производить реконфигурацию структуры транспортной (первичной) сети. Этому элементу транспортной сети соответствует термин "Digital Cross Connect", имеющий несколько аббревиатур, из которых чаще всего используются DSC и DXC.

16. Мультиплексор с выделением каналов (МВК) - оборудование, схожее по функциональному назначению с ЦКУ, но не имеющее системы управления. В англоязычной технической литературе используется термин "Add-Drop Multeplexer" (ADM).

17. Телефонная плотность - величина, определяющая число телефонов на 100 жителей, число семей и т.п. или на единицу площади. В последнем случае вводится уточняющее прилагательное - "Поверхностная телефонная плотность". Телефонная плотность в текстах на английском языке обозначается терминами Telephone density, Line density, Telephone penetration.

Читатель, вероятно, обратил внимание на следующий факт: определив ряд терминов, автор упустил фундаментальное - если верить названию монографии - определение. Речь, конечно, идет о словосочетании “Сеть абонентского доступа”. Проблема состоит в том, что точное определение “Сети абонентского доступа” еще не разработано. Более того, некоторые толкования этого термина содержат существенные противоречия. Мне кажется, что для “сети абонентского доступа” целесообразно ввести два определения: с точки зрения выполняемых функций и с точки зрения топологии телекоммуникационной системы.

Первое определение, в свою очередь, требует уточнения термина “доступ”. Это слово часто встречается в электросвязи и ряде смежных дисциплин. Применительно только к электросвязи слово “доступ” используется в нескольких аспектах (доступность коммутационной системы, доступ к дополнительным видам обслуживания и т.п.). В монографии термин “доступ” будет трактоваться так, как оно определено в : “Доступ (Access) - процесс обращения абонента к некоторым ресурсам системы, сети”. В этом контексте “Сеть абонентского доступа” может рассматриваться как фрагмент телекоммуникационной системы, обеспечивающий обращение абонента к некоторым общесетевым ресурсам.

Такое определение не дает практически никакого представления о границах сети абонентского доступа. Для того, чтобы восполнить этот пробел, целесообразно рассмотреть гипотетическую модель сети абонентского доступа, показанную на рисунке 1.6. Структура предлагаемой модели содержит две МС (N1 и N2) и один центр коммутации пакетов (ЦКП).

Тема 2. Основные понятия мультисервисной сети абонентского доступа. Цифровые системы передачи абонентских линий

Сейчас уже нельзя сказать, что вопросам мультисервисного доступа уделяется мало внимания. Скорее наоборот, сети доступа стали одним из направлений, наиболее активно развиваемых операторами связи, и можно смело утверждать, что будущее оператора во многом зависит от того, какие решения выбраны для его сети доступа. Большинство традиционных сетей доступа, эксплуатировавшихся операторами до настоящего времени, отличались высокой стоимостью и низкой эффективностью. Даже с началом конвергенции сетей связи в процессе перехода к NGN все новые решения относились преимущественно к транспортной сети, способам создания услуг и устройствам управления. Столкнувшись с необходимостью предоставления абоненту полного спектра инфокоммуникационных услуг, операторы пришли к рассматриваемому здесь понятию мультисервисного доступа.

Общее требование к современным технологиям мультисервисного доступа сформулировать несложно: должна обеспечиваться передача любых видов трафика в одном канале. Сегодня более красиво это называется "triple-plays": видео, речь и данные, причем переход к NGN требует более широкой трактовки этих понятий. Передача речи - это и услуги местной телефонной связи, и выход на междугородную и международную связь (по новым правилам должен быть реализован выход на альтернативного оператора), и IP-телефония. Аналогичным образом расширяются и понятия услуг передачи видео и данных.

Конечно, новые инфокоммуникационные услуги сначала будут востребованы сравнительно небольшой группой абонентов, но это будет самая высокодоходная категория пользователей в абонентской базе оператора. Расслоение абонентов по уровню спроса на новые виды услуг продолжится и в дальнейшем, дифференцируя тем самым приносимые доходы. Собственно говоря, сегодня задача оператора заключается в том, чтобы найти разумные решения при построении сети доступа, учитывающие возникающую дифференциацию уровня спроса на услуги среди отдельных групп абонентов.

2.2 Современные сети доступа

2.2.1 Особенности сетей доступа в Казахстане

Одно из преимуществ отечественных сетей доступа заключается в том, что более короткие, чем в большинстве стран, абонентские линии позволяют сравнительно просто применять оборудование типа xDSL и другие современные технические средства. Для России DSL-технологии особенно интересны, так как в российских сетях доступа преобладают многопарные кабели связи с медными жилами.

Однако на практике условия эксплуатации большинства абонентских кабелей не позволяют повсеместно внедрять современные услуги связи. Практически в каждом случае применения оборудования систем передачи (включая аппаратуру типа xDSL) необходимо проводить измерения абонентских кабелей.

2.2.2 Мультисервисный доступ

Пересматривая подходы к построению сети доступа, операторы преследуют несколько основных целей: удержать эксплуатационные расходы в разумных пределах, избежать построения специализированных сетей для каждого типа трафика и обеспечить удовлетворяющее абонентов качество услуг. Таким образом и появляется понятие мультисервисной сети доступа, основное назначение которой -обеспечение быстрого, экономичного и качественного доступа любого пользователя ко всем услугам сети оператора связи.

К оборудованию мультисервисной сети доступа в первую очередь относятся мультисервисные абонентские концентраторы, шлюзы доступа, шлюзы IP-телефонии (медиашлюзы), мультисервисные коммутаторы доступа и т.п., а также различные интегрированные устройства абонентского доступа (IAD), в значительной мере влияющие на принципы построения сети доступа.

Достаточно важно отметить некоторые аспекты работы современного оборудования доступа. Основная транспортная технология мультисервисной сети - IP. Следовательно, и доступ должен базироваться на IP-протоколе. Вместе с тем большинство решений в области мультисервисного доступа, предлагаемых сегодня на рынке, основаны на технологии ATM. Кроме того, доступ становится широкополосным: уровень доступа уже не должен оказываться "узким местом" операторской сети.

Производители оборудования, как правило, используют термин "оборудование доступа", не стараясь привязать свой продукт к какой-то классификации. Гораздо более важен набор поддерживаемых технологий, которые позволят оператору предоставить абонентам требуемый набор услуг. Второй ключевой момент - эффективность и простота внедрения оборудования в сети доступа.

2.3 Технологии доступа

Итак, какие же технологии следует использовать при реализации мульти-сервисной сети доступа? В настоящее время оператору доступны самые разные технологии для модернизации сетей доступа. Перед тем, как начать анализ, попробуем разделить все технологии по используемой среде передачи: оптический кабель, беспроводный доступ и металлические линии.

2.3.1 Оптический доступ

Суть технологии PON (Passive Optical Network) заключается в том, что между центральным узлом и удаленными абонентскими узлами создается полностью пассивная оптическая сеть, имеющая топологию "дерево". Оптика на сегодня далеко не самое востребованное решение для российских сетей доступа, однако ее перспективы выглядят достаточно многообещающе, чтобы можно было не сомневаться в необходимости наличия оптического интерфейса в оборудовании доступа.

2.3.2 Беспроводный доступ

Радиодоступ абонентов к услугам телефонии и передачи данных организуется с помощью технологий WLL. Одной из первых WLL-технологий, получивших широкое распространение на рынке, по праву считается стандарт DECT. Кроме того, для организации беспроводного абонентского доступа используются технологии классов WPAN (Wireless Personal Area Network), WLAN и WMAN.

Среди стандартов WPAN, обеспечивающих непосредственное подключение абонентских терминалов к устройствам доступа, наиболее широко распространены беспроводный оптический IrDA (связь по ИК-каналу) и Bluetooth. Их основное отличие -ограниченный радиус действия (1-10 м) и отсутствие проблем с частотным диапазоном.

Самым известным на рынке стандартом локальных сетей радиодоступа WLAN на сегодняшний день можно с уверенностью назвать IEEE 802.11a/b/g (технология Wi-Fi). Европейский (ETSI) аналог стандарта называется HiperLAN2. Различные версии стандарта ориентированы на работу в диапазонах от 2,4 до 5,8 ГГц и обеспечивают скорость передачи данных от 1 до 54 Мбит/с.

Новое модное слово в секторе беспроводных городских (Wireless MAN) сетей - WiMAX. Это коммерческое название группы стандартов IEEE 802.16, поддержанных промышленной группой, в состав которой входит ряд известных компаний-разработчиков. Этот протокол разработан для организации беспроводного доступа на уровне мегаполисов и призван решить проблему "последней мили" для самых требовательных провайдеров, а также сократить финансовые расходы и временные затраты на развертывание новых подключений благодаря унификации решения. Заявленные высокие скорости (до 70 Мбит/с) и дальность связи (до 50 км) должны обеспечить технологии WiMAX большое будущее.

2.3.3 Проводной доступ

Среди проводных технологий доступа первое место все еще занимает ISDN. Базовый доступ ISDN (ISDN BRI) можно назвать устаревшей технологией, но для многих операторов и абонентов это по-прежнему вполне эффективное и удобное решение. ISDN - это полностью цифровая (вплоть до абонентского терминала в странах, где развитие ISDN шло наиболее интенсивно), но все же телефонная сеть общего пользования; основное приложение ISDN - коммутируемый доступ к ресурсам Интернета -в лучшем случае позволит получить полосу пропускания 128 кбит/с. Если же соединение устанавливается только по одному каналу В, то общая полоса пропускания сравнима с тем, что может обеспечить современный модем. Для массового внедрения услуг ISDN необходима дорогостоящая модернизация ТфОП, поэтому ISDN будет пользоваться популярностью только в тех странах, где такая модернизация финансировалась государством (например, в Германии). Ключевым ISDN-приложением могла бы стать видеоконференц-связь, однако со времен создания ISDN техника видеоконференций активно развивалась на основе протокола IP, а не коммутации каналов ISDN.

Поддерживаемый набор протоколов семейства xDSL - наверное, самая важная характеристика оборудования доступа, поскольку использование технологий DSL, как уже упоминалось, наиболее актуально в Казахстане.

Для организации домашнего высокоскоростного доступа в Интернет удобны асимметричные DSL-реше-ния, например, ставшая наиболее распространенной в сегменте индивидуальных пользователей технология ADSL. Сегодня с ее помощью обеспечивается доступ на скоростях всего около 64-128 кбит/c из-за ограничений полосы пропускания в магистральных каналах существующих Интернет-провайдеров.

Все более популярным и востребованным, особенно среди корпоративных пользователей, становится симметричный доступ, например SHDSL (Рек. G.991.2). Стандарт описывает технологию передачи данных с одинаковой скоростью в прямом и обратном направлениях - до 2,3 и 4,6 Мбит/с по одной и по двум парам проводов соответственно. Технология SHDSL допускает использование репитеров, что позволяет организовывать каналы связи длиной до 18,5 км.

2.4 Сетевые интерфейсы

До недавнего времени интерфейсы между выносными абонентскими концентраторами и модулями подключения к оборудованию АТС не подлежали международной стандартизации. Практически во всех установленных до сегодняшнего дня цифровых АТС для этих интерфейсов используются цифровые тракты 2048 кбит/с и собственные "внутрифирменные" протоколы. Очевидным недостатком такого подхода является ограничение свободы выбора у операторов при установке дополнительного абонентского оборудования. Только в случае построения сети оператора на основе оборудования одного производителя этот внутренний интерфейс перестает быть проблемой.

2.4.1 Интерфейс V5

В последнее время в связи с расширением номенклатуры средств сети абонентского доступа, и в частности с распространением оборудования WLL, возросла потребность в "универсальном" интерфейсе, который позволил бы совмещать в одной сети оборудование разных производителей, реализующее различные типы доступа (по аналоговым линиям, ISDN BRI и PRI). Созданный для этой цели интерфейс V5 обусловил, по сути, революционные преобразования в организации взаимодействия оборудования сети доступа и узлов коммутации.

Для применения интерфейса V5 не требуется никакой определенной технологии доступа или среды передачи, хотя его разработку в значительной степени предопределило развертывание оптических и беспроводных средств доступа.

Национальные особенности в спецификации интерфейса V5 определяются для каждой страны в отдельности. Российские спецификации были утверждены в 1997 г. Мининфом-связи РФ (тогда - Госкомсвязи).

Интерфейс V5.1 позволяет подключать оборудование сети доступа к АТС по цифровому тракту 2048 кбит/с. Это обеспечивает подключение (без концентрации нагрузки) до 30 аналоговых абонентских линий либо 15 абонентов ISDN BRI. Информация сигнализации передается по каналу КИ16.

Интерфейс V5.2 ориентирован на группу от 1 до 16 трактов 2048 кбит/с и поддерживает концентрацию нагрузки. В каждом тракте предусмотрено несколько каналов сигнализации (КИ16, КИ15, КИ31). Таким образом, один интерфейс V5.2 может поддерживать (в зависимости от коэффициента концентрации) до 2000 портов ТфОП или до 1000 портов ISDN BRI.

В обоих случаях порты ТфОП и ISDN могут использовать один и тот же тракт интерфейса V5. Интерфейс V5.1 позволяет предоставлять услуги для клиентов сети в режиме по требованию (on-demand), а также в режиме полупостоянной линии (Semi-permanent). V5.2, предусматривающий возможность концентрации абонентской нагрузки, включает в себя протокол размещения несущих каналов для портов, находящихся в активном состоянии.

2.4.2 Интерфейс ISDN

Иногда оператору удобнее использовать ISDN, уже реализованный в сети, в качестве интерфейса между оборудованием доступа и сетью. Этот вид доступа обычно используется для включения УАТС, концентраторов и других выносных модулей в цифровые коммутационные станции. Конечно, в таких случаях отсутствует универсальность, свойственная V5, исчезает возможность предоставления дополнительных услуг (ДВО) телефонной станции, однако далеко не на всех АТС, к которым подключается оборудование доступа, поддерживается V5. В этом случае чаще необходима замена версии, что приводит к дополнительным расходам.

2.5 Конструктив

Конструктивное исполнение оборудования доступа более стандартно, чем используемые технологии. Как правило, это 19-дюймовая стойка, позволяющая "подобрать" платы для реализации нужных оператору услуг. В некоторых случаях платы заменяемы, то есть существует возможность вместо части аналоговых абонентов (POTS) подключить ISDN-абонентов. Наиболее удобна для операторов модульная архитектура оборудования с возможностью наращивания.

Размещение оборудования доступа может различаться как физически, так и архитектурно. С физическим размещением все достаточно привычно -оборудование доступа может находиться на территории опорной станции и работать в качестве абонентского расширения или блока предоставления новых услуг, например VoIP (особенно в варианте медиашлюза).

Более интересна архитектурная составляющая. Оборудование может являться составной частью сетевой концепции и в собранном виде представлять собой новый сетевой узел. Мультисервисный концентратор может быть частью узла NGN (Softswitch Class 5), а медиашлюз - входить в состав распределенной IP-УАТС.

Тема 3. Цифровые системы передачи абонентских линий. Сети абонентского доступа - ISDN

Одной из важнейших проблем телекоммуникационных сетей продолжает оставаться проблема абонентского доступа к сетевым услугам. Актуальность этой проблемы определяется в первую очередь бурным развитием сети Интернет, доступ к которой требует резкого увеличения пропускной способности сетей абонентского доступа. Основным средством сети доступа, несмотря на появление новых самых современных беспроводных способов абонентского доступа, остаются традиционные медные абонентские пары. Причиной этого является естественное стремление операторов сети защитить сделанные инвестиции. Поэтому в настоящее время и в обозримом будущем стратегическим направлением увеличения пропускной способности сетей абонентского доступа будет оставаться технология асимметричной цифровой абонентской линии ADSL, использующей в качестве среды передачи традиционную медную абонентскую пару и одновременно сохраняющей уже предоставляемые услуги в виде аналогового телефона или основного доступа к ISDN. Реализация этого стратегического направления эволюции сетей абонентского доступа зависит от конкретных условий существующей сети абонентского доступа каждой страны и определяется каждым оператором связи с учётом этих конкретных условий. Понятно, что разнообразие местных условий определяет большое число возможных способов миграции существующей сети абонентского доступа к технологии ADSL.

Телекоммуникационные технологии непрерывно совершенствуются, быстро адаптируясь к новым требованиям и условиям. Ещё совсем недавно основным и единственным средством абонентского доступа к услугам сети -- и в первую очередь к услугам сети Интернет был аналоговый модем. Однако самые совершенные аналоговые модемы -- модем, удовлетворяющий требованиям рекомендации ITU-T V.34, c потенциальной скоростью передачи до 33,6 Кбит/с, а также модем последующего поколения удовлетворяющий требованиям рекомендации V.90 ITU-T, с потенциальной скоростью передачи 56 Кбит/с практически не могут обеспечить эффективной работы пользователя в сети Интернет.

Таким образом, резкое увеличение скорости доступа к сетевым услугам, и в первую очередь к услугам Интернет является критически важным. Одним из методов решения этой задачи является применение семейства технологий высокоскоростной абонентской линии xDSL. Эти технологии обеспечивают высокую пропускную способность сети абонентского доступа, основным элементом которой является скрученная медная пара местной абонентской телефонной сети. Хотя каждая из технологий xDSL занимает свою нишу в телекоммуникационной сети, тем не менее, неоспоримо, что технологии асимметричной цифровой высокоскоростной абонентской линии ADSL и сверхвысокоскоростной цифровой абонентской линии VDSL представляют наибольший интерес и для провайдеров телекоммуникационных услуг, и для производителей оборудования, и для пользователей. И это не случайно -- технология ADSL появилась как способ предоставления пользователю широкого набора телекоммуникационных услуг, включая в первую очередь высокоскоростной доступ к сети Интернет. В свою очередь, технология VDSL способна предоставить пользователю широкую пропускную способность, которая позволяет ему получить доступ практически к любой широкополосной сетевой услуге как в ближайшем, так и в отдалённом будущем, но уже не в чисто медной, а в смешанной, медно-оптической сети доступа. Тем самым обе эти технологии обеспечат эволюционный путь внедрения оптического волокна в сеть абонентского доступа, защитив самым эффективным образом прошлые инвестиции операторов местных сетей. Таким образом, ADSL можно рассматривать как самый многообещающий член семейства технологий xDSL, преемником которого будет технология VDSL.

Хотя ключевой идеей миграции способов предоставления сетевых услуг с помощью технологий xDSL, является переход от аналоговой телефонной сети общего пользования сначала к ADSL, а затем, по мере необходимости, к VDSL, однако это не исключает применения для той же цели в качестве промежуточных этапов и других типов технологий xDSL. Например, для увеличения пропускной способности абонентской линии могут использоваться технологии IDSL и HDSL.

3.1 От аналогового модема к ADSL

Наиболее распространённым сценарием миграции для доступа к услугам сети Интернет безусловно является переход от исходной сети доступа с помощью аналоговых модемов ТфОП к целевой сети доступа с помощью модемов ADSL.

ADSL (Asymmetric Digital Subscriber Line -- асимметричная цифровая абонентская линия). Данная технология является асимметричной. Такая асимметрия, в сочетании с состоянием "постоянно установленного соединения" (когда исключается необходимость каждый раз набирать телефонный номер и ждать установки соединения), делает технологию ADSL идеальной для организации доступа в сеть Интернет, доступа к локальным сетям (ЛВС) и т.п. При организации таких соединений пользователи обычно получают гораздо больший объем информации, чем передают. Технология ADSL обеспечивает скорость "нисходящего" потока данных в пределах от 1,5 Мбит/с до 8 Мбит/с и скорость "восходящего" потока данных от 640 Кбит/с до 1,5 Мбит/с. ADSL технология позволяет без существенных затрат сохранить традиционный сервис и предоставить дополнительные услуги, среди которых:

Охранение традиционного телефонного сервиса,

Высокоскоростная передача данных со скоростью до 8 Мбит/ к пользователю услуги и до 1,5 Мбит/с -- от него,

Высокоскоростной доступ в Интернет,

Передача одного телевизионного канала с высоким качеством, видео-по-запросу,

Дистанционное обучение.

По сравнению с альтернативными кабельными модемами и волоконно-оптическими линиями главное преимущество ADSL состоит в том, что для нее используется уже существующий телефонный кабель. На окончаниях действующей телефонной линии устанавливаются частотные разделители (некоторые используют кальку с английского сплиттер), -- один на АТС и один у абонента. К абонентскому разделителю подключаются обычный аналоговый телефон и ADSL модем, который в зависимости от исполнения может выполнять функции маршрутизатора или моста между локальной сетью абонента и пограничным маршрутизатором провайдера. При этом работа модема абсолютно не мешает использованию обычной телефонной связи, которая существует независимо от того функционирует или нет ADSL линия.

В настоящее время имеются две модификации технологии ADSL: так называемая полномасштабная ADSL, которую называют просто ADSL, и так называемая "лёгкая" версия ADSL, которую называют "ADSL G. Lite". Обе версии ADSL в настоящее время регламентированы рекомендациями МСЭ-Т G.992.1 и G.992.2 соответственно.

Концепция полномасштабной ADSL первоначально родилась как попытка конкурентного ответа операторов местных телефонных сетей операторам кабельного телевизионного вещания (КТВ). С момента появления технологии ADSL прошло уже почти 7 лет, однако до сих пор она не получила массового практического применения. Уже в процессе разработки полномасштабной ADSL и первого опыта её внедрения выяснился целый ряд факторов, которые требовали коррекции первоначальной концепции.

Основными из этих факторов являются следующие:

1) Изменение основного целевого применения ADSL: в настоящее время основным видом широкополосного абонентского доступа является уже не предоставление услуг КТВ, а организация широкополосного доступа к Интернет. Для решения этой новой задачи вполне достаточно 20 % максимальной пропускной способности полномасштабной ADSL, которой соответствует скорость нисходящего потока (от сети к абоненту) 8,192 Мбит/с и скорости восходящего потока (от абонента к сети) 768 Кбит/с.

2) Неготовность сети Интернет для предоставления услуг полномасштабной ADSL. Дело в том, что сама система ADSL является лишь частью сети широкополосного доступа к сетевым услугам. Уже первые опыты внедрения ADSL в реальные сети доступа показали, что сегодняшняя инфраструктура сети Интернет не может поддерживать скорости передачи выше 300 - 400 Кбит/с. Хотя магистральный участок сети доступа к Интернету обычно выполняется на оптическом кабеле, однако, не эта сеть, а другие элементы сети доступа к Интернету -- такие, как маршрутизаторы, серверы и РС, включая и особенности трафика Интернет, определяют реальную пропускную способность этой сети. Поэтому применение полномасштабной ADSL на существующей сети практически не решает проблемы широкополосного абонентского доступа, а просто перемещает её с абонентского участка сети в магистральную сеть, обостряя проблемы инфраструктуры сети. Поэтому внедрение полномасштабной ADSL потребует значительного увеличения пропускной способности магистрального участка сети Интернет, и, следовательно, существенных дополнительных затрат.

3) Высокая стоимость оборудования и услуг: для широкого развёртывания технологии необходимо, чтобы стоимость абонентской линии ADSL была не более 500$; существующие цены существенно превышают эту величину. Поэтому реально используются другие продукты xDSL и в первую очередь модификации HDSL (типа многоскоростной MSDSL) с пропускной способностью 2 Мбит/с по одной медной паре.

4) Необходимость модернизации инфраструктуры существующей сети доступа: концепция полномасштабной ADSL требует применения специальных разделительных фильтров -- так называемых сплиттеров (splitter"s), разделяющих низкочастотные сигналы аналогового телефона или основного доступа BRI ISDN и высокочастотные сигналы широкополосного доступа как в помещении АТС, так и в помещении пользователя. Эта операция требует значительных трудозатрат, особенно в кроссе АТС, где заканчиваются тысячи абонентских линий.

5) Проблема электромагнитной совместимости, заключающаяся в недостаточной изученности влияния полномасштабной ADSL на другие высокоскоростные цифровые системы передачи (в том числе и типа xDSL), работающие параллельно в том же кабеле.

6) Большая потребляемая мощность и занимаемая площадь: существующие модемы ADSL кроме высокой стоимости, требуют ещё много места и расходуют значительную мощность (до 8 Вт на модем ADSL в активном состоянии). Чтобы технология ADSL оказалась приемлемой для размещения на коммутационной станции, необходимо снижение потребляемой мощности и увеличение плотности портов.

Асимметричный режим работы полномасштабной ADSL: при постоянной пропускной способности линии ADSL он является препятствием для некоторых приложений, требующих симметричного режима передачи, -- например, видеоконференций, а также для организации работы некоторых пользователей, имеющих собственные серверы Интернет. Поэтому необходима адаптивная ADSL, способная работать как в асимметричном, так и в симметричном режиме.

Аппаратное и программное обеспечение помещения пользователя, как показали испытания, является также узким местом систем ADSL. Проведенное тестирование показало, например, что популярные программы -- браузеры Web и платформы аппаратного обеспечения PC могут ограничивать пропускную способность PC величиной 600 Кбит/с. Таким образом, для полного использования высокоскоростных соединений ADSL необходимы улучшения клиентского аппаратного и программного обеспечения пользователя.

Перечисленные проблемы полномасштабной ADSL инициировали появление её "лёгкого" варианта, которым является уже упоминавшаяся ADSL G.Lite. Приведём наиболее существенные особенности этой технологии.

Возможность работы как в асимметричном, так и симметричном режимах: в асимметричном режиме при скорости передачи до 1536 Кбит/с в нисходящем направлении (от сети к абоненту) и до 512 Кбит/с в восходящем направлении (от абонента к сети); в симметричном режиме -- до 256 Кбит/с в каждом направлении передачи. В обоих режимах благодаря использованию кода DMT обеспечивается автоматическая подстройка скорости передачи ступенями по 32 Кбит/с в зависимости от длины линии и мощности помех.

Упрощение процесса установки и настройки модемов ADSL GLite путём отказа от использования разделительных фильтров (сплиттеров) в помещении пользователя, что позволяет выполнять эти процедуры самому пользователю. При этом не требуется замены внутренней проводки в помещении пользователя. Однако, как показывают результаты испытаний, это можно сделать не всегда. Эффективной мерой защиты широкополосного канала передачи данных от сигналов импульсного набора номера и вызывных сигналов является установка специальных микрофильтров прямо в телефонной розетке.

Реализуемые длины линий ADSL GLite позволяют обеспечить высокоскоростным доступом к Интернет подавляющее большинство пользователей домашнего сектора. Следует отметить, что многими производителями оборудования ADSL выбрана концепция оборудования ADSL, поддерживающего как режим работы полноскоростной ADSL, так и режим ADSL G.Lite. Предполагается, что появление оборудования ADSL G.Lite резко активизирует рынок устройств широкополосного доступа к услугам Интернет. Велика вероятность того, что он займёт нишу широкополосного доступа к сетевым услугам пользователей домашнего сектора.

Появление промежуточной ступени ADSL в виде ADSL G.Lite создаёт возможность плавного перехода от существующих аналоговых модемов к широкополосному доступу -- сначала к Интернет с помощью G.Lite, а затем к мультимедийным услугам с помощью полномасштабной ADSL.

Миграция от аналогового модема к любой из модификаций ADSL выгодна провайдеру услуг, поскольку вызовы повышенной продолжительности, какими являются обращения пользователя в сеть Интернет, направляются в обход коммутируемой телефонной сети общего пользования. Если провайдером услуг является традиционный оператор местной сети, то этот сценарий даёт ему ещё одно дополнительное (но не менее важное) преимущество, поскольку отпадает необходимость дорогостоящей модернизации коммутатора существующей телефонной сети в коммутатор ISDN, который понадобился бы для увеличения скорости доступа к услугам сети Интернет при варианте миграции от услуг телефонной сети общего пользования к услугам сети ISDN. Столь значительные дополнительные инвестиции при переходе от аналоговой ТфОП к ISDN объясняются тем, что последняя является сетевой концепцией с собственным очень мощным многоуровневым стеком протоколов. Поэтому для указанной модернизации требуются существенные изменения аппаратного и программного обеспечения цифровой коммутационной станции ТфОП. В то же время модем ADSL представляет собой просто высокоскоростной модем, для поддержки которого используются стандартные протоколы сети передачи данных, базирующейся на передаче пакетов или ячеек АТМ. Это существенно сокращает сложность доступа к сети Интернет и, следовательно, необходимые инвестиции.

Кроме того, с точки зрения пользователей Интернет, операторов сети и провайдеров услуг Интернет имеет больший смысл прямой переход от модема ТфОП не к модему ISDN, а прямо к модему ADSL. При максимальной пропускной способности узкополосной ISDN, равной 128 Кбит/с (которая соответствует объединению двух В -- каналов основного доступа ISDN), переход к ISDN даёт увеличение скорости доступа по сравнению с сетью ТфОП потенциально немногим более чем в 4 раза и требует к тому же значительных инвестиций. Поэтому промежуточный этап перехода от ТфОП к ISDN в качестве эффективного средства доступа к Интернет практически теряет смысл. Разумеется, это не относится к тем регионам, где уже имеет место широкое внедрение ISDN. Здесь, естественно, определяющим фактором является защита сделанных инвестиций.

Таким образом, основными стимулами рассматриваемого способа миграции сети доступа являются:

Огромное увеличение скорости доступа к услугам сети Интернет.

Сохранение аналогового телефона или основного доступа к ISDN (BRI ISDN).

Перемещение трафика Интернет из сети ТфОП в сеть IP или АТМ.

Отсутствие необходимости модернизации коммутатора ТфОП в коммутатор ISDN.

Если основным стимулом миграции от аналогового модема к модему ADSL является высокоскоростной доступ к сети Интернет, то наиболее целесообразным способом реализации этой услуги следует считать выполнение удалённого терминала ADSL, называемого ATU-R, в виде платы персонального компьютера (ПК). Это уменьшает общую сложность модема и устраняет проблемы внутренней проводки (от модема до ПК) в помещении пользователя. Однако операторы телефонной сети обычно не желают сдавать в аренду модем ADSL, если он является внутренней платой ПК, поскольку не хотят быть ответственными за возможное повреждение ПК. Поэтому большее распространение пока получили удалённые терминалы ATU-R в виде отдельного блока, называемого внешним модемом ADSL. Внешний модем ADSL подключается к порту ЛВС (10BaseT) или к последовательному порту (последовательной универсальной шине USB) компьютера. Эта конструкция является более сложной, поскольку она требует дополнительного места и отдельного питания. Но такой модем ADSL может быть куплен абонентом местной телефонной сети и запущен в работу пользователем ПК самостоятельно. Кроме того, внешний модем может подключаться не к ПК, а к концентратору или маршрутизатору ЛВС в тех случаях, когда пользователь имеет несколько компьютеров.

А такая ситуация является типичной для организаций, бизнес центров и жилых комплексов.

3.2 Миграция к ADSL при наличии в сети доступа ЦСПАЛ

Предыдущий сценарий миграции требует наличия непрерывной физической медной пары между помещением местной АТС и помещением пользователя. Такая ситуация более типична для развивающихся стран со сравнительно слаборазвитой телекоммуникационной сетью, к которым относится и Казахстан. В странах с развитой телекоммуникационной сетью на абонентской телефонной сети для увеличения перекрываемых расстояний широко применяются цифровые абонентские системы передачи (ЦСПАЛ) в основном с использованием аппаратуры первичных цифровых систем передачи плезиохронной иерархий (Е1). Например, в США в начале 90-х годов примерно 15 % всех абонентских линий обслуживалось с помощью ЦСПАЛ (в США они называются Digital Local Carrier -- DLC), в дальнейшем предполагается увеличение их суммарной ёмкости до 45 % от общего числа абонентских линий. В настоящее время строятся очень надёжные сети абонентского доступа, в которых используется комбинированная медно-оптическая среда передачи и защищённые кольцевые структуры с применением аппаратуры синхронной цифровой иерархии SDH.

Подобные документы

    Разработка состава абонентов. Определение емкости распределительного шкафа. Расчет нагрузки для мультисервисной сети абонентского доступа, имеющей топологию кольца и количества цифровых потоков. Широкополосная оптическая система доступа BroadAccess.

    курсовая работа , добавлен 14.01.2016

    Обзор сетей передачи данных. Средства и методы, применяемые для проектирования сетей. Разработка проекта сети высокоскоростного абонентского доступа на основе оптоволоконных технологий связи с использованием средств автоматизированного проектирования.

    дипломная работа , добавлен 06.04.2015

    Основные этапы развития сетей абонентского доступа. Изучение способов организации широкополосного абонентского доступа с использованием технологии PON, практические схемы его реализации. Особенности среды передачи. Расчет затухания участка трассы.

    дипломная работа , добавлен 02.12.2013

    Особенности построения цифровой сети ОАО РЖД с использованием волоконно-оптических линий связи. Выбор технологии широкополосного доступа. Алгоритм линейного кодирования в системах ADSL. Расчет пропускной способности для проектируемой сети доступа.

    дипломная работа , добавлен 30.08.2010

    Проектирование пассивной оптической сети. Варианты подключения сети абонентского доступа по технологиям DSL, PON, FTTx. Расчет длины абонентской линии по технологии PON (на примере затухания). Анализ и выбор моделей приёмо-передающего оборудования.

    дипломная работа , добавлен 18.10.2013

    Организация сети доступа на базе волоконно–оптической технологии передачи. Инсталляция компьютерных сетей. Настройка службы управления правами Active Directory. Работа с сетевыми протоколами. Настройка беспроводного соединения. Физическая топология сети.

    отчет по практике , добавлен 18.01.2015

    Описания применения LabView для тестирования сигнализации сети абонентского доступа. Анализ контроля качества вызовов и обнаружения фактов несанкционированного доступа. Изучение технико-экономического эффекта от разработки подсистемы документооборота.

    дипломная работа , добавлен 28.06.2011

    Расчет оборудования абонентского доступа. Определение интенсивности местных и междугородных исходящих и входящих телефонных нагрузок и их распределение на сети. Спецификация модулей и стативов проектируемой ОТС. План размещения оборудования в автозале.

    курсовая работа , добавлен 18.12.2012

    Обзор существующего положения сети телекоммуникаций г. Кокшетау. Организация цифровой сети доступа. Расчет характеристик сети абонентского доступа. Характеристики кабеля, прокладываемого в домах. Расчет затухания линии для самого удаленного абонента.

    дипломная работа , добавлен 27.05.2015

    Анализ технологии широкополосного доступа на основе ВОЛС, удовлетворяющей требованиям абонентов. Выбор телекоммуникационного оборудования (станционного и абонентского), магистрального и внутриобъектового оптического кабеля и схема его прокладки.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Выпускная квалификационная работа

Тема: Сеть абонентского доступа

Введение

Одной из важнейших проблем телекоммуникационных сетей продолжает оставаться проблема абонентского доступа к сетевым услугам. Актуальность этой проблемы определяется в первую очередь бурным развитием сети Интернет, доступ к которой требует резкого увеличения пропускной способности сетей абонентского доступа. Основным средством сети доступа, несмотря на появление новых самых современных беспроводных способов абонентского доступа, остаются традиционные медные абонентские пары. Вместе с тем в последнее время широко развиваются сети высокоскоростного абонентского доступа на основе оптоволоконных технологий связи. Отличительной их особенностью является:

* отсутствие вредного электромагнитного излучения;

* сигнал не искажается электромагнитными и радиочастотными помехами (оптический кабель абсолютно невосприимчив к воздействию высокого напряжения, электромагнитных наводок);

* оптоволоконный кабель легче;

* обладает гораздо большей пропускной способностью, чем обычный медный, а это значит, что оптоволокно может передать гораздо больше информации за то же время;

* малое затухание светового сигнала;

* защита от несанкционированного доступа и т.д.

Строительство и эксплуатация оптических линий гораздо дешевле, чем медных, поэтому по мере роста объема предоставления услуг оптического роста, цены должны снижаться

Целью дипломного проекта является разработка проекта сети высокоскоростного абонентского доступа на основе оптоволоконных технологий связи с использованием средств автоматизированного проектирования.

Для достижения цели дипломного проекта поставлены следующие задачи:

проанализировать методические и теоретические материалы по основам локальных и телекоммуникационных сетей;

изучить особенности и структуру локальных и телекоммуникационных сетей абонентского доступа;

исследовать этапы проектирования сетей, а также средства и методы, применяемые для проектирования сетей и обоснованно выбрать инструментарий для достижения цели дипломного проекта;

разработать проект сети абонентского доступа с использованием выбранного инструмента проектирования.

Практическая значимость дипломного проекта заключается в разработке проекта сети абонентского доступа инструментами и методами проектирования и дальнейшей реализации этого проекта на реальных объектах.

Структура дипломного проекта подчинена логике решения поставленных задач. В первой главе дипломного проекта будут представлены теоретические основы сетей передачи данных. Во второй главе будет представлен обзор технологий сетей. Третья глава посвящена проектированию: в ней будут представлены основные этапы проектирования, разработка проекта сети абонентского доступа согласно заданию на дипломный проект, выбор инструментария для разработки проекта. В четвёртой главе будет представлена организационно-экономическая часть. В пятой главе речь пойдёт о безопасности жизнедеятельности.

1. Обзор сетей передачи данных

1.1 Определение локальных сетей

Способов и средств обмена информацией за последнее время предложено множество: от простейшего переноса файлов с помощью дискеты до всемирной компьютерной сети Интернет, способной объединить все компьютеры мира. Какое же место в этой иерархии отводится локальным сетям?

Чаще всего термин "локальные сети" или "локальные вычислительные сети" (LAN, Local Area Network) понимают буквально, то есть это такие сети, которые имеют небольшие, локальные размеры, соединяют близко расположенные компьютеры. Однако достаточно посмотреть на характеристики некоторых современных локальных сетей, чтобы понять, что такое определение не точно. Например, некоторые локальные сети легко обеспечивают связь на расстоянии нескольких десятков километров. Это уже размеры не комнаты, не здания, не близко расположенных зданий, а, может быть, даже целого города. С другой стороны, по глобальной сети (WAN, Wide Area Network или GAN, Global Area Network) вполне могут связываться компьютеры, находящиеся на соседних столах в одной комнате, но ее почему-то никто не называет локальной сетью. Близко расположенные компьютеры могут также связываться с помощью кабеля, соединяющего разъемы внешних интерфейсов (RS232-C, Centronics) или даже без кабеля по инфракрасному каналу (IrDA) . Но такая связь тоже почему-то не называется локальной.

Неверно и довольно часто встречающееся определение локальной сети как малой сети, которая объединяет небольшое количество компьютеров. Действительно, как правило, локальная сеть связывает от двух до нескольких десятков компьютеров. Но предельные возможности современных локальных сетей гораздо выше: максимальное число абонентов может достигать тысячи. Называть такую сеть малой неправильно.

Некоторые авторы определяют локальную сеть как "систему для непосредственного соединения многих компьютеров". При этом подразумевается, что информация передается от компьютера к компьютеру без каких-либо посредников и по единой среде передачи. Однако говорить о единой среде передачи в современной локальной сети не приходится. Например, в пределах одной сети могут использоваться как электрические кабели различных типов (витая пара, коаксиальный кабель), так и оптоволоконные кабели. Определение передачи "без посредников" также не корректно, ведь в современных локальных сетях используются репитеры, трансиверы, концентраторы, коммутаторы, маршрутизаторы, мосты, которые порой производят довольно сложную обработку передаваемой информации. Не совсем понятно, можно ли считать их посредниками или нет, можно ли считать подобную сеть локальной.

Наверное, наиболее точно было бы определить как локальную такую сеть, которая позволяет пользователям не замечать связи. Еще можно сказать, что локальная сеть должна обеспечивать прозрачную связь. По сути, компьютеры, связанные локальной сетью, объединяются в один виртуальный компьютер, ресурсы которого могут быть доступны всем пользователям, причем этот доступ не менее удобен, чем к ресурсам, входящим непосредственно в каждый отдельный компьютер. Под удобством в данном случае понимается высокая реальная скорость доступа, скорость обмена информацией между приложениями, практически незаметная для пользователя. При таком определении становится понятно, что ни медленные глобальные сети, ни медленная связь через последовательный или параллельный порты не попадают под понятие локальной сети.

Из данного определения следует, что скорость передачи по локальной сети обязательно должна расти по мере роста быстродействия наиболее распространенных компьютеров. Именно это и наблюдается: если еще десять лет назад вполне приемлемой считалась скорость обмена в 10 Мбит/с, то сейчас уже среднескоростной считается сеть, имеющая пропускную способность 100 Мбит/с, активно разрабатываются, а кое-где используются средства для скорости 1000 Мбит/с и даже больше. Без этого уже нельзя, иначе связь станет слишком узким местом, будет чрезмерно замедлять работу объединенного сетью виртуального компьютера, снижать удобство доступа к сетевым ресурсам.

Таким образом, главное отличие локальной сети от любой другой -- высокая скорость передачи информации по сети. Но это еще не все, не менее важны и другие факторы.

В частности, принципиально необходим низкий уровень ошибок передачи, вызванных как внутренними, так и внешними факторами. Ведь даже очень быстро переданная информация, которая искажена ошибками, просто не имеет смысла, ее придется передавать еще раз. Поэтому локальные сети обязательно используют специально прокладываемые высококачественные и хорошо защищенные от помех линии связи.

Особое значение имеет и такая характеристика сети, как возможность работы с большими нагрузками, то есть с высокой интенсивностью обмена (или, как еще говорят, с большим трафиком). Ведь если механизм управления обменом, используемый в сети, не слишком эффективен, то компьютеры могут подолгу ждать своей очереди на передачу. И даже если эта передача будет производиться затем на высочайшей скорости и безошибочно, для пользователя сети такая задержка доступа ко всем сетевым ресурсам неприемлема. Ему ведь не важно, почему приходится ждать.

Механизм управления обменом может гарантированно успешно работать только в том случае, когда заранее известно, сколько компьютеров (или, как еще говорят, абонентов, узлов) допустимо подключить к сети. Иначе всегда можно включить столько абонентов, что вследствие перегрузки забуксует любой механизм управления. Наконец, сетью можно назвать только такую систему передачи данных, которая позволяет объединять до нескольких десятков компьютеров, но никак не два, как в случае связи через стандартные порты.

Таким образом, сформулировать отличительные признаки локальной сети можно следующим образом:

высокая скорость передачи информации, большая пропускная способность сети. Приемлемая скорость сейчас -- не менее 100 Мбит/с;

низкий уровень ошибок передачи (или, что тоже самое, высококачественные каналы связи). Допустимая вероятность ошибок передачи данных должна быть порядка 10-8 -- 10-12;

эффективный, быстродействующий механизм управления обменом по сети;

заранее четко ограниченное количество компьютеров, подключаемых к сети.

При таком определении понятно, что глобальные сети отличаются от локальных прежде всего тем, что они рассчитаны на неограниченное число абонентов. Кроме того, они используют (или могут использовать) не слишком качественные каналы связи и сравнительно низкую скорость передачи. А механизм управления обменом в них не может быть гарантированно быстрым. В глобальных сетях гораздо важнее не качество связи, а сам факт ее существования.

Нередко выделяют еще один класс компьютерных сетей -- городские, региональные сети (MAN, Metropolitan Area Network), которые обычно по своим характеристикам ближе к глобальным сетям, хотя иногда все-таки имеют некоторые черты локальных сетей, например, высококачественные каналы связи и сравнительно высокие скорости передачи. В принципе городская сеть может быть локальной со всеми ее преимуществами.

Правда, сейчас уже нельзя провести четкую границу между локальными и глобальными сетями. Большинство локальных сетей имеет выход в глобальную. Но характер передаваемой информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. И хотя все компьютеры локальной сети в данном случае включены также и в глобальную сеть, специфики локальной сети это не отменяет. Возможность выхода в глобальную сеть остается всего лишь одним из ресурсов, разделяемых пользователями локальной сети.

По локальной сети может передаваться самая разная цифровая информация: данные, изображения, телефонные разговоры, электронные письма и т.д. Кстати, именно задача передачи изображений, особенно полноцветных динамических, предъявляет самые высокие требования к быстродействию сети. Чаще всего локальные сети используются для разделения (совместного использования) таких ресурсов, как дисковое пространство, принтеры и выход в глобальную сеть, но это всего лишь незначительная часть тех возможностей, которые предоставляют средства локальных сетей. Например, они позволяют осуществлять обмен информацией между компьютерами разных типов. Полноценными абонентами (узлами) сети могут быть не только компьютеры, но и другие устройства, например, принтеры, плоттеры, сканеры. Локальные сети дают также возможность организовать систему параллельных вычислений на всех компьютерах сети, что многократно ускоряет решение сложных математических задач. С их помощью, как уже упоминалось, можно управлять работой технологической системы или исследовательской установки с нескольких компьютеров одновременно.

Однако сети имеют и довольно существенные недостатки, о которых всегда следует помнить:

сеть требует дополнительных, иногда значительных материальных затрат на покупку сетевого оборудования, программного обеспечения, на прокладку соединительных кабелей и обучение персонала;

сеть требует приема на работу специалиста (администратора сети), который будет заниматься контролем работы сети, ее модернизацией, управлением доступом к ресурсам, устранением возможных неисправностей, защитой информации и резервным копированием (для больших сетей может понадобиться целая бригада администраторов);

сеть ограничивает возможности перемещения компьютеров, подключенных к ней, так как при этом может понадобиться перекладка соединительных кабелей;

сети представляют собой прекрасную среду для распространения компьютерных вирусов, поэтому вопросам защиты от них придется уделять гораздо больше внимания, чем в случае автономного использования компьютеров, ведь достаточно инфицировать один, и все компьютеры сети будут поражены;

сеть резко повышает опасность несанкционированного доступа к информации с целью ее кражи или уничтожения; информационная защита требует проведения целого комплекса технических и организационных мероприятий.

Здесь же следует упомянуть о таких важнейших понятиях теории сетей, как абонент, сервер, клиент.

Абонент (узел, хост, станция) -- это устройство, подключенное к сети и активно участвующее в информационном обмене. Чаще всего абонентом (узлом) сети является компьютер, но абонентом также может быть, например, сетевой принтер или другое периферийное устройство, имеющее возможность напрямую подключаться к сети. Далее вместо термина "абонент" для простоты будет использоваться термин "компьютер".

Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует их ресурсы. Таким образом, он обслуживает сеть. Серверов в сети может быть несколько, и совсем не обязательно, что сервер - самый мощный компьютер. Выделенный (dedicated) сервер -- это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие задачи. Специфический тип сервера -- это сетевой принтер.

Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает, то есть сеть его обслуживает, а он ей только пользуется. Компьютер-клиент также часто называют рабочей станцией. В принципе каждый компьютер может быть одновременно как клиентом, так и сервером.

Под сервером и клиентом часто понимают также не сами компьютеры, а работающие на них программные приложения. В этом случае то приложение, которое только отдает ресурс в сеть, является сервером, а то приложение, которое только пользуется сетевыми ресурсами -- клиентом .

1.2 Типы линий сетей связи

Средой передачи информации называются те линии связи (или каналы связи), по которым производится обмен информацией между компьютерами. В подавляющем большинстве компьютерных сетей (особенно локальных) используются проводные или кабельные каналы связи, хотя существуют и беспроводные сети, которые сейчас находят все более широкое применение, особенно в портативных компьютерах.

Информация в сетях чаще всего передается в последовательном коде, то есть бит за битом. Такая передача медленнее и сложнее, чем при использовании параллельного кода. Однако надо учитывать то, что при более быстрой параллельной передаче (по нескольким кабелям одновременно) увеличивается количество соединительных кабелей в число раз, равное количеству разрядов параллельного кода (например, в 8 раз при 8-разрядном коде). Это совсем не мелочь, как может показаться на первый взгляд. При значительных расстояниях между абонентами сети стоимость кабеля вполне сравнима со стоимостью компьютеров и даже может превосходить ее. К тому же проложить один кабель (реже два разнонаправленных) гораздо проще, чем 8, 16 или 32. Значительно дешевле обойдется также поиск повреждений и ремонт кабеля .

Но это еще не все. Передача на большие расстояния при любом типе кабеля требует сложной передающей и приемной аппаратуры, так как при этом необходимо формировать мощный сигнал на передающем конце и детектировать слабый сигнал на приемном конце. При последовательной передаче для этого требуется всего один передатчик и один приемник. При параллельной же количество требуемых передатчиков и приемников возрастает пропорционально разрядности используемого параллельного кода. В связи с этим, даже если разрабатывается сеть незначительной длины (порядка десятка метров) чаще всего выбирают последовательную передачу.

К тому же при параллельной передаче чрезвычайно важно, чтобы длины отдельных кабелей были точно равны друг другу. Иначе в результате прохождения по кабелям разной длины между сигналами на приемном конце образуется временной сдвиг, который может привести к сбоям в работе или даже к полной неработоспособности сети. Например, при скорости передачи 100 Мбит/с и длительности бита 10 нс этот временной сдвиг не должен превышать 5--10 нс. Такую величину сдвига дает разница в длинах кабелей в 1--2 метра. При длине кабеля 1000 метров это составляет 0,1--0,2%.

Надо отметить, что в некоторых высокоскоростных локальных сетях все-таки используют параллельную передачу по 2--4 кабелям, что позволяет при заданной скорости передачи применять более дешевые кабели с меньшей полосой пропускания. Но допустимая длина кабелей при этом не превышает сотни метров. Примером может служить сегмент 100BASE-T4 сети Fast Ethernet.

Промышленностью выпускается огромное количество типов кабелей, например, только одна крупнейшая кабельная компания Belden предлагает более 2000 их наименований. Но все кабели можно разделить на три большие группы:

электрические (медные) кабели на основе витых пар проводов (twisted pair), которые делятся на экранированные (shielded twisted pair, STP) и неэкранированные (unshielded twisted pair, UTP);

электрические (медные) коаксиальные кабели (coaxial cable);

оптоволоконные кабели (fibre optic).

Каждый тип кабеля имеет свои преимущества и недостатки, так что при выборе надо учитывать как особенности решаемой задачи, так и особенности конкретной сети, в том числе и используемую топологию.

Можно выделить следующие основные параметры кабелей, принципиально важные для использования в локальных сетях:

полоса пропускания кабеля (частотный диапазон сигналов, пропускаемых кабелем) и затухание сигнала в кабеле; два этих параметра тесно связаны между собой, так как с ростом частоты сигнала растет затухание сигнала; надо выбирать кабель, который на заданной частоте сигнала имеет приемлемое затухание; или же надо выбирать частоту сигнала, на которой затухание еще приемлем; затухание измеряется в децибелах и пропорционально длине кабеля;

помехозащищенность кабеля и обеспечиваемая им секретность передачи информации; эти два взаимосвязанных параметра показывают, как кабель взаимодействует с окружающей средой, то есть, как он реагирует на внешние помехи, и насколько просто прослушать информацию, передаваемую по кабелю;

скорость распространения сигнала по кабелю или, обратный параметр - задержка сигнала на метр длины кабеля; этот параметр имеет принципиальное значение при выборе длины сети; типичные величины скорости распространения сигнала - от 0,6 до 0,8 от скорости распространения света в вакууме; соответственно типичные величины задержек - от 4 до 5 нс/м;

для электрических кабелей очень важна величина волнового сопротивления кабеля; волновое сопротивление важно учитывать при согласовании кабеля для предотвращения отражения сигнала от концов кабеля; волновое сопротивление зависит от формы и взаиморасположения проводников, от технологии изготовления и материала диэлектрика кабеля; типичные значения волнового сопротивления - от 50 до 150 Ом.

В настоящее время действуют следующие стандарты на кабели:

EIA/TIA 568 (Commercial Building Telecommunications Cabling Standard) - американский;

ISO/IEC IS 11801 (Generic cabling for customer premises) - международный;

CENELEC EN 50173 (Generic cabling systems) - европейский.

Эти стандарты описывают практически одинаковые кабельные системы, но отличаются терминологией и нормами на параметры. В данном курсе предлагается придерживаться терминологии стандарта EIA/TIA 568.

1.3 Основные положения эталонной модели обмена информацией открытой системы

В сети производится множество операций, обеспечивающих передачу данных от компьютера к компьютеру. Пользователя не интересует, как именно это происходит, ему необходим доступ к приложению или компьютерному ресурсу, расположенному в другом компьютере сети. В действительности же вся передаваемая информация проходит много этапов обработки.

Прежде всего, она разбивается на блоки, каждый из которых снабжается управляющей информацией. Полученные блоки оформляются в виде сетевых пакетов, потом эти пакеты кодируются, передаются с помощью электрических или световых сигналов по сети в соответствии с выбранным методом доступа, затем из принятых пакетов вновь восстанавливаются заключенные в них блоки данных, блоки соединяются в данные, которые и становятся доступны другому приложению. Это, конечно, упрощенное описание происходящих процессов.

Часть из указанных процедур реализуется только программно, другая часть - аппаратно, а какие-то операции могут выполняться как программами, так и аппаратурой.

Упорядочить все выполняемые процедуры, разделить их на уровни и подуровни, взаимодействующие между собой, как раз и призваны модели сетей. Эти модели позволяют правильно организовать взаимодействие как абонентам внутри одной сети, так и самым разным сетям на различных уровнях. В настоящее время наибольшее распространение получила так называемая эталонная модель обмена информацией открытой системы OSI (Open System Interchange). Под термином "открытая система" понимается не замкнутая в себе система, имеющая возможность взаимодействия с какими-то другими системами (в отличие от закрытой системы).

Модель OSI была предложена Международной организацией стандартов ISO (International Standarts Organization) в 1984 году. С тех пор ее используют (более или менее строго) все производители сетевых продуктов. Как и любая универсальная модель, OSI довольно громоздка, избыточна, и не слишком гибка. Поэтому реальные сетевые средства, предлагаемые различными фирмами, не обязательно придерживаются принятого разделения функций. Однако знакомство с моделью OSI позволяет лучше понять, что же происходит в сети.

Все сетевые функции в модели разделены на 7 уровней (рисунок 1). При этом вышестоящие уровни выполняют более сложные, глобальные задачи, для чего используют в своих целях нижестоящие уровни, а также управляют ими. Цель нижестоящего уровня - предоставление услуг вышестоящему уровню, причем вышестоящему уровню не важны детали выполнения этих услуг. Нижестоящие уровни выполняют более простые и конкретные функции. В идеале каждый уровень взаимодействует только с теми, которые находятся рядом с ним (выше и ниже него). Верхний уровень соответствует прикладной задаче, работающему в данный момент приложению, нижний - непосредственной передаче сигналов по каналу связи.

Модель OSI относится не только к локальным сетям, но и к любым сетям связи между компьютерами или другими абонентами. В частности, функции сети Интернет также можно поделить на уровни в соответствии с моделью OSI. Принципиальные отличия локальных сетей от глобальных, с точки зрения модели OSI, наблюдаются только на нижних уровнях модели.

Рисунок 1 - Семь уровней модели OSI

Функции, входящие в показанные на рисунке 1 уровни, реализуются каждым абонентом сети. При этом каждый уровень на одном абоненте работает так, как будто он имеет прямую связь с соответствующим уровнем другого абонента. Между одноименными уровнями абонентов сети существует виртуальная (логическая) связь, например, между прикладными уровнями взаимодействующих по сети абонентов. Реальную же, физическую связь (кабель, радиоканал) абоненты одной сети имеют только на самом нижнем, первом, физическом уровне. В передающем абоненте информация проходит все уровни, начиная с верхнего и заканчивая нижним. В принимающем абоненте полученная информация совершает обратный путь: от нижнего уровня к верхнему (рисунок 2).

Данные, которые необходимо передать по сети, на пути от верхнего (седьмого) уровня до нижнего (первого) проходят процесс инкапсуляции. Каждый нижеследующий уровень не только производит обработку данных, приходящих с более высокого уровня, но и снабжает их своим заголовком, а также служебной информацией. Такой процесс обрастания служебной информацией продолжается до последнего (физического) уровня. На физическом уровне вся эта многооболочечная конструкция передается по кабелю приемнику. Там она проделывает обратную процедуру декапсуляции, то есть при передаче на вышестоящий уровень убирается одна из оболочек. Верхнего седьмого уровня достигают уже данные, освобожденные от всех оболочек, то есть от всей служебной информации нижестоящих уровней. При этом каждый уровень принимающего абонента производит обработку данных, полученных с нижеследующего уровня в соответствии с убираемой им служебной информацией.

Рисунок 2 - Путь информации от абонента к абоненту

Если на пути между абонентами в сети включаются некие промежуточные устройства (например, трансиверы, репитеры, концентраторы, коммутаторы, маршрутизаторы), то и они тоже могут выполнять функции, входящие в нижние уровни модели OSI. Чем больше сложность промежуточного устройства, тем больше уровней оно захватывает. Но любое промежуточное устройство должно принимать и возвращать информацию на нижнем, физическом уровне. Все внутренние преобразования данных должны производиться дважды и в противоположных направлениях. Промежуточные сетевые устройства в отличие от полноценных абонентов (например, компьютеров) работают только на нижних уровнях и к тому же выполняют двустороннее преобразование .

Рисунок 3 - Включение промежуточных устройств между абонентами сети

1.4 Стандартные сетевые протоколы

Протоколы - это набор правил и процедур, регулирующих порядок осуществления связи. Компьютеры, участвующие в обмене, должны работать по одним и тем же протоколам, чтобы в результате передачи вся информация восстанавливалась в первоначальном виде.

О протоколах нижних уровней (физического и канального), относящихся к аппаратуре, уже упоминалось в предыдущих разделах. В частности, к ним относятся методы кодирования и декодирования, а также управления обменом в сети. Сейчас следует остановиться на особенностях протоколов более высоких уровней, реализуемых программно.

Связь сетевого адаптера с сетевым программным обеспечением осуществляют драйверы сетевых адаптеров. Именно благодаря драйверу компьютер может не знать никаких аппаратных особенностей адаптера (его адресов, правил обмена с ним, его характеристик). Драйвер унифицирует, делает единообразным взаимодействие программных средств высокого уровня с любым адаптером данного класса. Сетевые драйверы, поставляемые вместе с сетевыми адаптерами, позволяют сетевым программам одинаково работать с платами разных поставщиков и даже с платами разных локальных сетей (Ethernet, Arcnet, Token-Ring и т.д.). Если говорить о стандартной модели OSI, то драйверы, как правило, выполняют функции канального уровня, хотя иногда они реализуют и часть функций сетевого уровня (рисунок 4). Например, драйверы формируют передаваемый пакет в буферной памяти адаптера, читают из этой памяти пришедший по сети пакет, дают команду на передачу, информируют компьютер о приеме пакета.

Рисунок 4 - Функции драйвера сетевого адаптера в модели OSI

Качество написания программы драйвера во многом определяет эффективность работы сети в целом. Даже при самых лучших характеристиках сетевого адаптера некачественный драйвер может резко ухудшить обмен по сети.

Прежде чем приобрести плату адаптера, необходимо ознакомиться со списком совместимого оборудования (Hardware Compatibility List, HCL), который публикуют все производители сетевых операционных систем. Выбор там довольно велик (например, для Microsoft Windows Server список включает более сотни драйверов сетевых адаптеров). Если в перечень HCL не входит адаптер какого-то типа, лучше его не покупать.

Существует несколько стандартных наборов (или, как их еще называют, стеков) протоколов, получивших сейчас широкое распространение:

набор протоколов ISO/OSI;

IBM System Network Architecture (SNA);

Apple AppleTalk;

набор протоколов глобальной сети Интернет, TCP/IP.

Включение в этот список протоколов глобальной сети вполне объяснимо, ведь, как уже отмечалось, модель OSI используется для любой открытой системы: на базе как локальной, так и глобальной сети или комбинации локальной и глобальной сетей.

Протоколы перечисленных наборов делятся на три основных типа:

прикладные протоколы (выполняющие функции трех верхних уровней модели OSI - прикладного, представительского и сеансового);

транспортные протоколы (реализующие функции средних уровней модели OSI - транспортного и сеансового);

сетевые протоколы (осуществляющие функции трех нижних уровней модели OSI).

Прикладные протоколы обеспечивают взаимодействие приложений и обмен данными между ними. Наиболее популярны:

FTAM (File Transfer Access and Management) - протокол OSI доступа к файлам;

X.400 - протокол CCITT для международного обмена электронной почтой;

Х.500 - протокол CCITT служб файлов и каталогов на нескольких системах;

SMTP (Simple Mail Transfer Protocol) - протокол глобальной сети Интернет для обмена электронной почтой;

FTP (File Transfer Protocol) - протокол глобальной сети Интернет для передачи файлов;

SNMP (Simple Network Management Protocol) - протокол для мониторинга сети, контроля за работой сетевых компонентов и управления ими;

Telnet - протокол глобальной сети Интернет для регистрации на удаленных серверах и обработки данных на них;

Microsoft SMBs (Server Message Blocks, блоки сообщений сервера) и клиентские оболочки или редиректоры фирмы Microsoft;

NCP (Novell NetWare Core Protocol) и клиентские оболочки или редиректоры фирмы Novell.

Транспортные протоколы поддерживают сеансы связи между компьютерами и гарантируют надежный обмен данными между ними. Наиболее популярные из них следующие:

TCP (Transmission Control Protocol) - часть набора протоколов TCP/IP для гарантированной доставки данных, разбитых на последовательность фрагментов;

SPX - часть набора протоколов IPX/SPX (Internetwork Packet Exchange/Sequential Packet Exchange) для гарантированной доставки данных, разбитых на последовательность фрагментов, предложенных компанией Novell;

NetBEUI - (NetBIOS Extended User Interface, расширенный интерфейс NetBIOS) - устанавливает сеансы связи между компьютерами (NetBIOS) и предоставляет верхним уровням транспортные услуги (NetBEUI).

Сетевые протоколы управляют адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу. Широко распространены следующие из них:

IP (Internet Protocol) - TCP/IP-протокол для негарантированной передачи пакетов без установления соединений;

IPX (Internetwork Packet Exchange) - протокол компании NetWare для негарантированной передачи пакетов и маршрутизации пакетов;

NWLink - реализация протокола IPX/SPX компании Microsoft;

NetBEUI - транспортный протокол, обеспечивающий услуги транспортировки данных для сеансов и приложений NetBIOS.

Все перечисленные протоколы могут быть поставлены в соответствие тем или иным уровням эталонной модели OSI. Но при этом надо учитывать, что разработчики протоколов не слишком строго придерживаются этих уровней. Например, некоторые протоколы выполняют функции, относящиеся сразу к нескольким уровням модели OSI, а другие - только часть функций одного из уровней. Это приводит к тому, что протоколы разных компаний часто оказываются несовместимы между собой. Кроме того, протоколы могут быть успешно использованы исключительно в составе своего набора протоколов (стека протоколов), который выполняет более или менее законченную группу функций. Как раз это и делает сетевую операционную систему "фирменной", то есть, по сути, несовместимой со стандартной моделью открытой системы OSI .

В качестве примера на рисунке 5, рисунке 6 и рисунке 7 схематически показано соотношение протоколов, используемых популярными фирменными сетевыми операционными системами, и уровней стандартной модели OSI. Как видно из рисунков, практически ни на одном уровне нет четкого соответствия реального протокола какому-нибудь уровню идеальной модели. Выстраивание подобных соотношений довольно условно, так как трудно четко разграничить функции всех частей программного обеспечения. К тому же компании-производители программных средств далеко не всегда подробно описывают внутреннюю структуру продуктов.

Рисунок 5 - Соотношение уровней модели OSI и протоколов сети Интернет

Рисунок 6 - Соотношение уровней модели OSI и протоколов операционной системы Windows Server

Рисунок 7 - Соотношение уровней модели OSI и протоколов операционной системы NetWare

2. Технологии сетей

2.1 Сети на основе технологии PDH

Первый цифровой поток установила в 1957 г. компания Bell System. В дальнейшем технология была стандартизована, и теперь известна как Т1. Сделано это было для удовлетворения все возрастающих потребностей операторов связи. Местная телефония на родине технологии, в США, на тот момент была сравнительно хорошо развита. Изменений на клиентской сети, состоящей из медных пар, не предвиделось (и не произошло до сих пор). Поэтому основные усилия операторов сосредоточились на построении магистральных (транспортных) сетей и их эффективного использования для передачи голоса. Естественно, о передаче данных в те времена даже не шло и речи.

Разработанные системы использовали принцип импульсно-кодовой модуляции и методы мультиплексирования (суммирования) с временным разделением каналов (Time Division Multiplexing, сокращенно TDM) для передачи нескольких голосовых каналов, иначе называемых тайм-слотами, в одном потоке данных.

В США, Канаде и Японии за основу был принят поток T1, который со скоростью 1,536 Мбит/с передавал 24 тайм-слота, а в Европе (и немного позже в Советском Союзе) - поток Е1, имеющий скорость 2,048Мбит/с, и позволяющий передавать 30 каналов передачи данных со скоростью 64 кбит/с, плюс канал сигнализации (16 тайм слот) и синхронизации (нулевой тайм-слот). Это без преувеличения казалось вершиной прогресса.

Дальнейшее развитие привело к появлению ещё ряда стандартизированных потоков E2 - E3 - E4 - E5 скоростями передачи данных соответственно 8,448 - 34,368 - 139,264 - 564,992 Мбит/с. Они получили название плезиохронной цифровой иерархии - PDH (Plesiochronous Digital Hierarchy), которая до сих пор часто используется как для телефонии, так и для передачи данных . Более современные технологии практически полностью вытеснили PDH с оптических коммуникаций, но на устаревших медных кабелях ее позиции до сих пор непоколебимы. Структура сети PDH представлена на рисунке 8.

Рисунок 8 - Структура сети PDH

В каждом устройстве есть свой тактовый генератор, который работает с небольшими отличиями от других. В паре приемопередатчиков ведущий узел задает свою синхронизацию (Sync 1-2), а ведомый подстраивается под него. Единая синхронизация для большой сети отсутствует. Поэтому плезиохронная в данном случае означает "почти" синхронная. Это удобно для строительства отдельных каналов, но вызывает лишние сложности при создании глобальных сетей.

2.2 Сети на основе технологии SDH

По мере объединения сетей различных операторов связи остро встает проблема глобальной синхронизации узлов. Плюс к этому, усложнение топологии вызвало трудности при извлечении из потока составляющих каналов. Технические особенности независимой синхронизации разных узлов (наличие выравнивающих бит) делали это невозможным. То есть, чтобы извлечь из потока Е4 поток Е1, необходимо демультиплексировать Е4 на четыре Е3, затем один из Е3 на четыре Е2, и только после этого получить нужный Е1.

В этой ситуации удачным решением стала разработанная в 80-х годах синхронная оптическая сеть SONET, и синхронная цифровая иерархия SDH, которые часто рассматриваются как единая технология SONET/SDH.

Появление стандартов синхронной цифровой иерархии передачи данных (SDH) в 1988 году ознаменовало собой новый этап развития транспортных сетей. Системы синхронной передачи не только преодолели ограничения плезиохронных систем-предшественниц (PDH), но и снизили накладные расходы на передачу информации. Ряд уникальных достоинств (доступ к низкоскоростным каналам без полного демультиплексирования всего потока, высокая отказоустойчивость, развитые средства мониторинга и управления, гибкое управление постоянными абонентскими соединениями) обусловили выбор специалистов в пользу новой технологии, ставшей основой первичных сетей нового поколения. На сегодняшний день технология SDH заслуженно считается не только перспективной, но и достаточно используемой технологией для создания транспортных сетей. Технология SDH обладает рядом важных достоинств с пользовательской, эксплуатационной и инвестиционной точек зрения. А именно:

Умеренная структурная сложность, снижающая затраты на монтаж, эксплуатацию и развитие сети, в том числе подключение новых узлов.

Широкий диапазон возможных скоростей - от 155,520 Мбит/с (STM-1) до 2,488 Гбит/с (STM-16) и выше.

Возможность интеграции с каналами PDH, поскольку цифровые каналы PDH являются входными каналами для сетей SDH.

Высокая надежность системы благодаря централизованному мониторингу и управлению, а также возможности использования резервных каналов.

Высокая степень управляемости системы благодаря полностью программному управлению.

Возможность динамического предоставления услуг - каналы для абонентов могут создаваться и настраиваться динамически, без внесения изменений в инфраструктуру системы.

Высокий уровень стандартизации технологии, что облегчает интеграцию и расширение системы, дает возможность применения оборудования различных производителей.

Высокая степень распространения стандарта в мировой практике.

9. Стандарт SDH обладает достаточной степенью зрелости, что делает его надежным для инвестиций. В дополнение к перечисленным достоинствам, необходимо отметить развитие магистральных телекоммуникаций российских операторов связи на основе SDH, что предоставляет дополнительные возможности для привлекательных интеграционных решений. Преобразование и передача данных в этой системе достаточно сложны. Нужно отметить лишь несколько моментов. В качестве минимальной "транспортной" единицы используется контейнер, размер полезной нагрузки которого составляет 1890 байтов, а служебной части - 540 байтов. Упрощенно, их можно рассматривать как некоторое количество каналов Т1/Е1, объединенных (мультиплексированных) в один SONET/SDH канал. При этом какая либо связь между потоками, или их изменение, не предусматривается (если не считать появившихся позже и сравнительно малораспространенных кросс-коннекторов). Схема сети SDH представлена на рисунке 9.

Можно видеть, что такая схема создавалась строго под нужды телефонии. Действительно, мультиплексоры (MUX) обычно устанавливаются на АТС, где потоки Е1 (собранные с других мультиплексоров) переводятся в медные аналоговые линии. Оптимизация пропускной способности сети (иначе говоря, межстанционных соединений) достигается подбором соотношения количества абонентских линий и используемых потоков.

Перечисленные достоинства делают решения, основанные на технологии SDH, рациональными с точки зрения инвестиций. В настоящее время она может считаться базовой для построения современных транспортных сетей, как для корпоративных сетей различного масштаба, так и для сетей связи общего пользования. SDH получает все большее применение для построения современных цифровых первичных сетей.

Также были разработаны технологии сетей Frame Relay, ISDN (Integrated Service Digital Network), АТМ (Asynchronous Transfer Mode). Но широкое использования данные технологии не нашли. Позднее были разработаны WDM (Wavelength Division Multiplexing -спектральное уплотнение каналов), техноло-

Рисунок 9- Структура транспортной сети SONET/SDH и схема возможных вариантов прохождения потоков Е1

гия плотного волнового мультиплексирования (Dense Wave Division Multiplexing -- DWDM), многопротокольная коммутация меток MPLS.Наибольшее распространение данные технологии получили в США, где хорошо развит рынок волоконно-оптических систем . Используются они и на сетях связи других регионов мира, особенно в Европе, Азии и Латинской Америке.

2.3 Сетевая топология

Под сетевой топологией принято понимать способ описания конфигурации сети, схему расположения и соединения сетевых устройств. Существует множество способов соединения сетевых устройств, из которых можно выделить восемь базовых топологий: шина, кольцо, звезда, двойное кольцо, ячеистая топология, решетка, дерево, Fat Tree. Остальные способы являются комбинациями базовых. В этом случае такие топологии называются смешанными или гибридными.

Рассмотрим некоторые виды сетевых топологий. Широко распространена топология - "Общая шина" (рисунок 10).

Рисунок 10 - Топология "Общая шина"

Топология общая шина предполагает использование одного кабеля, к которому подключаются все компьютеры сети. Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет -- кому адресовано сообщение и если ей, то обрабатывает его. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные. Для того чтобы исключить одновременную посылку данных, применяется либо "несущий" сигнал, либо один из компьютеров является главным и "даёт слово" „МАРКЕР“ остальным станциям. Типичная шинная топология имеет простую структуру кабельной системы с короткими отрезками кабелей. Поэтому по сравнению с другими топологиями стоимость ее реализации невелика. Однако низкая стоимость реализации компенсируется высокой стоимостью управления. Фактически, самым большим недостатком шинной топологии является то, что диагностика ошибок и изолирование сетевых проблем могут быть довольно сложными, поскольку здесь имеются несколько точек концентрации. Так как среда передачи данных не проходит через узлы, подключенные к сети, потеря работоспособности одного из устройств никак не сказывается на других устройствах. Хотя использование всего лишь одного кабеля может рассматриваться как достоинство шинной топологии, однако оно компенсируется тем фактом, что кабель, используемый в этом типе топологии, может стать критической точкой отказа. Другими словами, если шина обрывается, то ни одно из подключенных к ней устройств не сможет передавать сигналы.

Рассмотрим Топологию "Кольцо" (рисунок 11).

Рисунок 11- Топология "Кольцо"

Кольцо -- это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов. Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли репитера, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на "кольцо". В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в "кольцо" обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии "шина", максимальное количество абонентов в кольце может быть достаточно большое (до тысячи и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков -- пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Следующий вид топологии - "Звезда" (рисунок 12).

Звезда -- базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило "дерево"). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом ложится очень большая нагрузка, потому ничем другим, кроме сети, он заниматься не может. Как правило, именно

Рисунок 12 - Топология "Звезда"

центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано. Рабочая станция, с которой необходимо передать данные, отсылает их на концентратор, а тот определяет адресата и отдаёт ему информацию. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных. Этот недостаток отсутствует на сетевом устройстве более высокого уровня - коммутаторе, который, в отличие от концентратора, подающего пакет на все порты, подает лишь на определенный порт - получателю. Одновременно может быть передано несколько пакетов. Сколько - зависит от коммутатора.

Наряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, например древовидная структура (рисунок.13). Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети располагается в точке (корень), в которой собираются коммуникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответственно адаптерными платам применяют сетевые усилители и / или коммутаторы. Коммутатор, обладающий одновременно и функциями усилителя, называют активным концентратором.

Рисунок 13 - Топология "Дерево"

На практике применяют две их разновидности, обеспечивающие подключение соответственно восьми или шестнадцати линий.

Устройство к которому можно присоединить максимум три станции, называют пассивным концентратором. Пассивный концентратор обычно используют как разветвитель. Он не нуждается в усилителе. Предпосылкой для подключения пассивного концентратора является то, что максимальное возможное расстояние до рабочей станции не должно превышать нескольких десятков метров.

Топология сети определяет не только физическое расположение компьютеров, но, что намного более важное, характер связей между ними, особенности распространения сигналов по сети. Именно характер связей определяет степень отказостойкости сети, необходимую сложность сетевой аппаратуры, наиболее подходящий метод управления обменом, возможны типы сред передачи (каналов связи), допустимый размер сети (длина линий связи и количество абонентов), необходимость электрического согласования, и много чего другого .

3. Разработка сети абонентского доступа

3.1 Исходные данные для разработки

Сеть абонентского доступа разрабатывается согласно заданию на дипломный проект для территории, представленной на рисунке 14 с целью обеспечения широкополосного доступа в Интернет и обмена информацией между пользователями сети. Сеть разрабатывается по технологии Ethernet с использованием волоконно-оптических линий связи и медного кабеля и предполагает наличие нескольких серверов. Предполагаемая скорость абонентского доступа с учётом пропускной способности городской сети - 100 Мбит/c. Ранее скорость абонентского доступа была 10 Мбит/с, но в связи с использованием усовершенствованного оборудования удалось обеспечить пользователям большую скорость. Для подключения к сети к компьютерам выдвигаются следующие требования:

Наличие в компьютере сетевого адаптера с интерфейсом Ethernet 10/ 100BaseTX;

Наличие операционной системы, поддерживающей протокол TCP/IP.

3.2 Основные сетевые решения

Для удобства сегментирования сети используем квартальное разделение по типу "Звезда". Сегменты для повышения управляемости сети делим на подсети. Территорию разделим на сегменты, каждый из которых охватывающих несколько домов (от 4 до 10). Каждый сегмент связан с квартальным оборудованием через оптический конвертер по стандарту 1000BaseLX с использованием волоконно-оптического кабеля с целью увеличения расстояния кабельного сегмента и высокой скорости передачи информации. Каждое квартальное оборудование подключено к центральному узлу связи через оптический конвертер по стандарту Gigabit Ethernet 1000BaseLX для увеличения пропускной способности на магистрали сети.

Рисунок 14 - Территория проектирования

Центральный узел связи (расположем на АТС по согласованию сторон): Выберем технологию доступа к сети SDH из-за большой пропускной способности трактов, гибкости, возможности динамически наращивать емкость сети без прерывания трафика. На центральном узле расположем главный коммутатор и маршрутизатор для доступа к сети SDH магистрального провайдера и серверы, отвечающие за подсчет трафика, за мониторинг сети, также будет установлен DNS сервер.DNS сервер - специализированное ПО для обслуживания DNS (Domain Name System -- система доменных имён), а также компьютер, на котором это ПО выполняется. DNS-сервер может быть ответственным за некоторые зоны или может перенаправлять запросы вышестоящим серверам.

Подобные документы

    Анализ существующих топологий построения сети MetroEthernet. Оценка типовых решение построения сетей абонентского доступа. Расчет оборудования для услуг передачи речи. Разработка топологической и ситуационной схемы. Расчет трафика услуг телефонии.

    курсовая работа , добавлен 17.05.2016

    Существующая телефонная сеть общего пользования. Расчет пропускной способности для предоставления услуг Triple Play. Расчет общей пропускной способности сети для передачи и приема данных. Выбор коммутатора абонентского доступа и оптического кабеля.

    дипломная работа , добавлен 19.01.2016

    Классификация и характеристика сетей доступа. Технология сетей коллективного доступа. Выбор технологии широкополосного доступа. Факторы, влияющие на параметры качества ADSL. Способы конфигурации абонентского доступа. Основные компоненты DSL соединения.

    дипломная работа , добавлен 26.09.2014

    Обзор современных систем беспроводного абонентского доступа. Особенности применения модемов OFDM и многостанционного доступа OFDMA. Разработка информационной сети на основе технологии Mobile WiMAX, оценка экономической эффективности ее внедрения.

    дипломная работа , добавлен 12.07.2010

    Развитие и области применения, технические основы PLC и технологические предпосылки внедрения PLC-решений, обзор технологий широкополосного абонентского доступа. Принцип действия и основные возможности оборудования, примерная схема организации сети.

    дипломная работа , добавлен 28.07.2010

    Современные средства связи и их характеристика. Разработка структуры сети передачи данных. Выбор типа доступа. Основные уровни модели OSI, технология доступа. Выбор оборудования, характеристики сервера. Расчет стоимостных показателей для прокладки сети.

    курсовая работа , добавлен 22.04.2013

    Топология компьютерных сетей. Методы доступа к несущей в компьютерных сетях. Среды передачи данных, их характеристики. Структурная модель OSI, её уровни. Протокол IP, принципы маршрутизации пакетов. Физическая топология сети. Определение класса подсети.

    контрольная работа , добавлен 14.01.2011

    Обзор существующих технологий широкополосного доступа (xDSL, PON, беспроводной доступ). Описание особенностей технологии PON. Проект по строительству сети абонентского доступа на технологии пассивной оптической сети. Схема распределительных участков.

    дипломная работа , добавлен 28.05.2016

    Выбор и обоснование технологий построения локальных вычислительных сетей. Анализ среды передачи данных. Расчет производительности сети, планировка помещений. Выбор программного обеспечения сети. Виды стандартов беспроводного доступа в сеть Интернет.

    курсовая работа , добавлен 22.12.2010

    Основные принципы организации сетей абонентского доступа на базе PLC-технологии. Угрозы локальным сетям, политика безопасности при использовании технологии PLC. Анализ функционирования PLC здания инженерно-внедренческого центра ООО "НПП "Интепс Ком".

Введение в ISDN.

По определению МСЭ ISDN (Integral Service Digital Network - цифровая сеть с интеграцией служб) представляет собой сеть, которая предусматривает сквозные цифровые соединения между оконечными устройствами и обеспечивает предоставление широкого спектра речевых и неречевых услуг, доступных им с помощью ограниченного набора стандартизированных интерфейсов.

Первоначально ISDN воспринималось как средство модернизации существующей инфраструктуры, то есть как новый способ передачи речевых сообщений. Сейчас ISDN воспринимается как средство, позволяющее производить обмен речевыми сообщениями, данными, текстом, видеоизображением по стандартным линиям со скоростями более высокими, чем у обычных модемов. При этом гарантируется высокое качество и высокая надежность передачи, а также широкий набор сервисных функций.

Особенности ISDN.

Коммутация цифровых потоков обеспечивает сквозные цифровые соединения между оконечными устройствами. Преобразование аналоговых сигналов в цифровые сигналы происходит на уровне оконечных ISDN устройств.

Принцип распределенной телефонной станции. Согласно этому принципу все станции в ISDN сети логически объединены в одну и могут рассматриваться абонентами в качестве единой ISDN станции. Это позволяет оптимизировать маршрут и нагрузку на каналы (функция управления сетью), а также предоставить ряд дополнительных услуг.

Большая достоверность и скорость установления соединения (около 30 мсек. на один узел).

4. Возможность передачи посредством одного порта ISDN речи, данных, изображения, текста по одной паре проводов, идущих от абонента.

Условия функционирования ISDN.

1. Все станции должны быть цифровыми и поддерживать работу в ISDN сети.

2. Межстанционные соединения должны быть реализованы посредством сигнализации ОКС-7 с подсистемами ISUP и SCCP. На ведомственной сети при организации межстанционной связи рекомендуется также применение сигнализаций DSS1 и QSIG на первичном и основных доступах.

3. В качестве абонентской сигнализации должна быть использована сигнализация DSS1.

Пример ISDN - сети приведен на рисунке 1.

Рисунок 1. Структура ISDN сети.

Абонентские доступы в сети ISDN.

Абонентское подключение в сети ISDN называется абонентским доступом. Каждая ISDN станция предлагает аналоговый и цифровой абонентский доступы. При использовании аналогового абонентского доступа возможно использование сети ISDN только для телефонных вызовов или соединений через модем. При использовании цифрового абонентского доступа возможно использование всего набора основных и дополнительных услуг сети ISDN. На цифровом абонентском доступе всегда используется сигнализация DSS1.

Цифровой абонентский доступ может быть реализован:

· по двухпроводной медной паре (такие линии используются в аналоговой телефонии). Такой тип доступа называется базовым (основным) доступом (Basic Rate Access - BRA) . Посредством такого доступа к ISDN станции общего пользования подключаются ISDN абоненты и небольшие офисные АТС. При таком подключении абонентская установка получает два В-канала со скоростью передачи 64 Кбит/сек, и канал сигнализации со скоростью передачи 16 Кбит/сек (D-канал). Иногда такой тип подключения определяют как (2B+D).

· по четырехпроводной медной линии. Такой тип доступа называется первичным доступом (Primary Rate Access - PRA) . Посредством такого доступа производится подключение к ISDN станции сети общего пользования больших и средних ведомственных станций. При таком подключении оконечный терминал получает для использования 30 В-каналов со скоростью передачи 64 Кбит/сек и один канал сигнализации (D-канал) со скоростью передачи 64 Кбит/сек. Иногда такой тип подключения определяю как (30B+D).

2.1.Базовый доступ ISDN (BRA).

Конфигурация базового доступа приведена на рисунке 2.

Рисунок 2. Базовый доступ ISDN.

Подключение абонентских терминалов к станции осуществляется посредством двухпроводной медной линии с использованием устройства сетевого окончания (Network Terminator - NT). Сетевое окончание предназначено для подключения терминальной установки к абонентской линии и для обеспечения совместного использования одной абонентской линии несколькими абонентскими установками Функционально блок NT разделяется на два субблока NT1 и NT2. Первую задачу реализует NT1, вторую - NT2. Эти устройства могут быть выполнены как в виде отдельных блоков, так и в виде одного общего блока.

На абонентском доступе определены контрольные точки для достижения совместимости оборудования различных производителей. В контрольной точке S определен протокол (логический интерфейс) взаимодействия терминала пользователя и NT2. В контрольной точке U определен протокол взаимодействия NT1 и станционного оборудования. В контрольной точке Т определен протокол работы устройств NT1 и NT2.

Интерфейс Sо представляет собой четырехпроводную шину и обеспечивает организацию двух стандартных двунаправленных каналов со скоростью передачи 64 Кбит/сек (В-каналов), канала сигнализации (D-канала) со скоростью передачи 16 Кбит/сек и служебного канала, используемого для целей синхронизации, эхоподавления и т. д. По шине Sо осуществляется питание пользовательского оборудования. В каждом из направлений информация передается со скоростью 192Кбит/сек. Информация передается в виде пакета (фрейма) длиной 48 бит, частота повторения 4000 раз в секунду. При этом каждый цикл передаются 16 бит на каждый В-канал, 4 бита на D-канал и 12 бит используются для служебных целей. К шине Sо могут быть одновременно подключены до 8 абонентских терминалов различных типов. Однако в их распоряжении находятся только 2 В-канала, следовательно, в активном состоянии (например, в состоянии установления соединения или в разговорной фазе) могут быть одновременно только один (например, видеофон) или два абонентских (например, ISDN-телефоны) терминала.

Возможны следующие варианты S-шины (рисунок 3а, б, в).

Рисунок 3а. Удлиненная шина.

Рисунок 3б. Соединение точка-точка.

Рисунок 3в. Типы S-шины.

Интерфейс Ukо представляет собой двухпроводную линию и обеспечивает организацию двух двусторонних В-каналов и одного D-канала. Скорость передачи информации составляет 160 Кбит/сек (144 Кбит/сек полезной информации).

Длина интерфейса U K 0 может составлять от 2,3км. до 8 км. Преобразование двухпроводного интерфейса U K 0 в четырехпроводный S 0 интерфейс осуществляется устройством сетевого окончания (NT).

2.2. Первичный доступ ISDN.

Аналогичен основному доступу. К ведомственной АТС подключенной с помощью первичного доступа подаются 30 В-каналов со скоростью передачи 64Кбит/сек и один D-канал со скоростью передачи 64 Кбит/сек. Обычно для обеспечения PRA-доступа используют систему ИКМ-30. При этом 1-15, 17-31 временные интервалы используются в качестве В-каналов, 16 временной интервал - в качестве D-канала Сигнальная информация (D-канальные сообщения) для всех В-каналов передаются в D-канале.

Услуги ISDN.

Под услугой, оказываемой ISDN, понимается то, что предлагается пользователю в порядке удовлетворения конкретных требований к связи

Предусмотренные ISDN услуги классифицируются следующим образом. Существуют основные услуги (basic service) и дополнительные услуги (supplementary services). Основная услуга описывает предлагаемую пользователю услугу в ее основном (минимальном) варианте. Дополнительные услуги модифицируют или дополняют основную услугу в отношении качества или удобства связи. Для пользователя как самостоятельные они не предлагаются, а только используются в сочетании с основными услугами.

В свою очередь основные услуги делятся на услуги переноса информации (bearer services) , соответствующие уровням 1-3 эталонной модели ВОС и услуги предоставления видов связи (teleservices) , соответствующие уровням 4-7 эталонной модели ВОС. Иногда услуги предоставления видов связи называют «высокоуровневой совместимостью» (High Level Capabilities). Услуги переноса информации предоставляют свои услуги услугам предоставления видов связи.


Похожая информация.


Организация сети абонентского доступа

Сеть абонентского доступа – совокупность технических средств для передачи сообщений на участке от абонентского устройства до оконечной станции местной телефонной сети;

Варианты организации абонентского доступа

В сегодняшнем мире телекоммуникаций все большее значение приобретает фактор сосуществования стандартных и новых технологий. Эта ситуация является базой для сетей следующего поколения NGN. Пользовательская и сигнальная информация всегда передаются через интерфейсы и по заранее определенным протоколам.

Технология Triple play обеспечивает одновременную передачу речи, видео, работу в сети Интернет, передачу данных. Технология реализуется с использованием оптического волокна в абонентской линии.

Интерфейс разнородных устройств. Интерфейсы всегда реализуют какие-либо протоколы.

Понятие интерфейса включает в себя:

Аппаратные средства, связывающие различные устройства между собой или с пользователем (линии связи, устройства сопряжения, физические характеристики канала связи)

Программные средства, обеспечивающие связь различных устройств между собой или с пользователем (программы, обеспечивающие передачу информации между различными пользователями; типы данных; список доступных областей памяти; набор допустимых процедур и операций и их параметров)

Правила и алгоритмы, на основе которых функционируют программные и аппаратные средства. (например, способы преобразования сигналов и данных)

Протокол - это программно-аппаратные средства, предназначенные для сопряжения однородных устройств. Протокол обеспечивает взаимодействие между элементами, находящимися на одном иерархическом уровне, но в разных узлах сети.

Протокол – это совокупность правил взаимодействия УУ внутри ЦСК и на сети, определяющих:

Алгоритм взаимодействия устройств, программ, систем обработки данных, процессов или пользователей.

Правила адресации сетевого оборудования.

Коды, используемые для представления данных.

Скорости передачи информации.

Методы передачи информации.

Форматы сообщений.

Правила формирования пакетов сообщений.

Методы обнаружения и исправления ошибок.

Способы электрических соединений.

Выбор маршрута передачи сообщений.

ЦИФРОВЫЕ АБОНЕНТСКИЕ ЛИНИИ ISDN

ISDN - (Integrated Services Digital Network) - цифровые сети интегрального обслуживания. Технология ISDN позволяет по одной физической линии организовать несколько временных каналов

ITU-T определил следующие группы абонентских устройств ISDN:
ТЕ1 - терминал ISDN. Терминалы этого типа полностью совместимы со стандартами ISDN и подключаются к сети через 4-проводную линию, в которой организовано 3 временных интервала (ВИ): В, В, D.
ТЕ2 - терминал, несовместимый со стандартом ISDN. В качестве такого терминала рассматриваются телефонный аппарат ТА, аппараты факсимильный, телексный, видеотексный, ПЭВМ.
ТА - терминальный адаптер для подключения терминалов, несовместимых с ISDN. ТА преобразует сигналы других стандартов в стандарт ISDN.
NT - сетевое окончание, обеспечивающее следующие функции:


подача питания к абонентской установке,

обеспечение технического обслуживания линий,

контроль рабочих характеристик, синхронизация,

мультиплексирование, коммутация и концентрация,

разрешение конфликтов доступа.

Сетевое окончание может представлять собой единое физическое оборудование NT, а может и разделяться на сетевые окончания двух категорий: NT1 и NT2 с учетом категорий обслуживаемых абонентов.
{NT1 - сетевое окончание уровня 1. (Это уровни эталонной модели взаимодействия открытых систем). В функции NT1 входит подача питания к абонентской установке, обеспечение технического обслуживания линий, контроль рабочих характеристик, синхронизация, мультиплексирование, разрешение конфликтов доступа.
NT2 - сетевое окончание уровней 2,3. Выполняет функции обработки протоколов уровней 2 и 3, мультиплексирование, коммутация и концентрация, обеспечение технического обслуживания линий, контроль рабочих характеристик, разрешение конфликтов доступа. В качестве функционального блока NT2 могут выступать, например, УПАТС, ЛВС.}
LT - линейное окончание ЦСК, к которому подключена линия ISDN. LT представляет собой интегральный согласующий линейный комплект.
ET - станционное окончание ЦСК, представляющее собой абонентский модуль подключения абонентов ISDN. (например, в S-12 это модуль ISM).
Интерфейсы в опорных точках:
Интерфейс в точке R связывает несовместимое с ISDN оборудование ТЕ2 с терминальным адаптером ТА.

Интерфейс в точке Т связывает оборудование пользователя с сетевым окончанием NT или два вида сетевого окончания NT1 и NT2.

Интерфейс в точке U является интерфейсом между оборудованием NT и оборудованием АТС ТФОП и обеспечивает:

линейное кодирование информации для передачи по парам медных проводов;

двухсторонний обмен информацией по любым существующим физическим парам проводов;

подключение абонентов ISDN по двухпроводной схеме через NT.

Интерфейс в точке S обеспечивает подключение абонентов ISDN по 4-проводной схеме без NT.
Интерфейс в точке V (V5.1 и V5.2) предоставляет возможность совместного использования оборудования разных производителей с различными системами абонентского доступа, включая беспроводные линии связи, оптиковолоконные линии и медные кабели

10.5.1 Современное развитие местных сетей электросвязи ориентировано на предоставление наиболее полного спектра услуг, начиная от стандартной телефонии до современных услуг мультимедиа. Это позволяет рассматривать элементы сетей не только с точки зрения наличия определенных линейных сооружений и различной аппаратуры, но и функционального назначения.

10.5.2 Сеть абонентского доступа - это совокупность технических средств между оконечными абонентскими устройствами, установленными в помещении пользователя, и тем коммутационным оборудованием, в план нумерации (или адресации) которого входят подключаемые к телекоммуникационной системе терминалы.

10.5.3 Исходя из данного определения, границы сети абонентского доступа достаточно широко варьируются в зависимости от типа передаваемой информации (аналоговая телефония, услуги ЦСИС, передача данных и интернет, радиовещание, телевидение) и включают в себя различные фрагменты традиционных проводных и беспроводных сетей. В каких-то случаях это всего лишь абонентские линии, в каких-то - это абонентские линии, абонентские концентраторы и соединительные линии до опорных АТС, в каких-то - это савокупность активного оборудования xDSL и медных или оптических линий связи и т. д.

Также в качестве среды переноса информации могут использоваться фрагменты сети кабельного телевидения, аппаратура беспроводной связи.

10.5.4 Сети абонентского доступа, работающие на основе проводных технологий, можно условно подразделить на следующие виды:

а) аналоговые абонентские линии АТС и цифровые системы уплотнения абонентских линий, позволяющие организовать несколько телефонных линий по одной паре медного кабеля;

б) цифровая сеть с интеграцией услуг (ISDN), предполагающая организацию цифровых абонентских линий на основе интерфейсов базового (BRI) и первичного доступа (PRI). Нередко помимо терминалов ЦСИО (ISDN) в данные сети включается оборудование учрежденческих и учрежденческо-производственных АТС корпоративных пользователей услуг связи;

в) сеть на основе технологии ADSL (асимметричная цифровая абонентская линия), позволяющая организовывать одновременно с аналоговой телефонией асимметричный канал передачи данных. Наибольшее развитие данной технологии связано с ростом в потребности доступа к сети Internet. Сеть обеспечивает при низкой стоимости выделенный канал для доступа в Internet, работает по существующим абонентским линиям и используется, в основном, индивидуальными клиентами телефонной сети связи;

г) сеть доступа на основе технологий xDSL (кроме ADSL), обеспечивающая различные варианты (скорость, вид передаваемой информации) доступа к сетям связи. Сеть предназначена для подключения корпоративных и индивидуальных пользователей и может работать по медным и оптическим линиям связи;

д) сеть беспроводного абонентского доступа WLL (беспроводная абонентская линия), предполагающая стационарное размещение или ограниченную подвижность абонентского радиооборудования и не требующая при развертывании больших затрат на строительство кабельных сооружений. Данная сеть может строиться на базе аппаратуры, работающей по стандарту DECT.

10.5.5 На сегодняшний день на рынке имеется значительное количество видов оборудования отечественного и импортного производства, применяемого для организации сетей абонентского доступа.

10.5.6 При оборудовании сетей абонентского доступа применяются такие же виды технологии и организации работ, как при монтаже других систем связи.

10.5.7 Монтаж и настройка различного оборудования сетей абонентского доступа требует участия специалистов в области телефонии, передачи данных, систем передачи, радиосвязи, кабельных линий и т.д.

10.5.8 Производство работ по проектированию, монтажу и настройке активного и пассивного оборудования должно осуществляться в соответствии с методиками и инструкциями производителей для каждого конкретного типа оборудования.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!