Настройка оборудования и программного обеспечения

Классификация коммутаторов по возможности управления. Виды коммутаторов

Неуправляемый коммутатор подходит для построения домашней сети или сети малого офиса. Его отличие от остальных - "коробочная" версия. Т. е., после покупки достаточно настроить подключение к серверу провайдера и можно раздавать интернет.

При работе с таким коммутатором стоит учитывать, что возможны кратковременные задержки при использовании пейджеров голосовой связи (Skype, Vo-IP) и невозможность распределения ширины канала интернета. Т. е., при включении программы Torrent на одном из компьютеров в сети - она будет потреблять почти всю ширину канала, а остальные компьютеры в сети - пользоваться остатками пропускной способности.

Управляемый коммутатор - это лучшее решение для построение сети в офисах и компьютерных клубах. Данный вид продается в стандартной комплектации и стандартными настройками.

Для настройки такого коммутатора придется попотеть - большое количество настроек может вскружить голову, но при правильном подходе принести замечательные результаты. Главная особенность - распределение ширины канала и настройка пропускной способности каждого порта. Возьмем в пример канал интернета 50 Mbps/s, 5 компьютеров в сети, IP-TV приставку и ATC. Мы можем поступить несколькими вариантами, но рассмотрю я всего один.

Далее - только Ваша фантазия и нестандартное мышление. В общей сложности мы имеем относительно большой канал. Почему относительно? Эту информацию Вы узнаете далее, если внимательно вникнете в суть. Забыл уточнить - я собираю сеть для малого офиса. IP-TV используется для телевизора в комнате ожидания, компьютеры - для работы с электронной почтой, передачей документов, просмотров сайтов, ATC - для подключения стационарных телефонов к основной линии для приема звонков с Skype, QIP, сотовых телефонов и пр.

Управляемый коммутатор представляет собой модификацию обычного, неуправляемого коммутатора.

Кроме чипа ASIC в нем присутствует микропроцессор, способный выполнять дополнительные операции над фреймами, такие как фильтрация, модификация и приоритезация, а так же другие, не связанные с пересылкой фреймов, действия. Например, предоставлять пользовательский интерфейс.

В практическом плане отличия управляемых коммутаторов от неуправляемых заключаются, во-первых, в списке поддерживаемых стандартов - если обычный, неуправляемый коммутатор поддерживает только стандарт Ethernet (IEEE 802.3) в различных его разновидностях, то управляемые коммутаторы поддерживают гораздо более широкий список стандартов: 802.1Q.802.1X, 802.1AE, 802.3ad (802.1AX) и так далее, которые требуют настройки и управления.

Есть еще один вид - SMART-коммутаторы.

Появление смарт-коммутаторов было обязано маркетинговому ходу - устройства поддерживают значительно меньшее количество функций, чем свои старшие собратья, но тем не менее являются управляемыми.

Что бы не смущать и не вводить потребителей в заблуждение, первые модели выпускались с обозначением intelligent или web-managed.

Эти устройства по значительно меньшей цене предлагали базовую функциональность управляемых коммутаторов - организация VLAN, административное включение и отключение портов, фильтрация по MAC-адресу или ограничение скорости. Традиционно, единственным способом управления являлся web-интерфейс, так что за смарт-коммутаторами прочно закрепилось название web-eуправляемых.

Коммутатор хранит в ассоциативной памяти таблицу коммутации, в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он начинает работать в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (frame) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу.

Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не привязан к какому-либо порту коммутатора, то кадр будет отправлен на все порты.

Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Способы коммутации в коммутаторе.

Существует три способа коммутации. Каждый из них - это комбинация таких параметров, как время ожидания «принятием коммутатором решения» (латентность) и надёжность передачи.

С промежуточным хранением (Store and Forward).

«Напролет» (cut-through).

«Бесфрагментный» (fragment-free) или гибридный.

С промежуточным хранением (Store and Forward). Коммутатор читает всю поступившую информацию в кадре, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него проверенный кадр.

«Напролет» (cut-through). Коммутатор считывает в кадре только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.

«Бесфрагментный» (fragment-free) или гибридный. Этот режим является модификацией режима «Напролет». Передача осуществляется после фильтрации фрагментов коллизий (кадры размером 64 байта обрабатываются по технологии store-and-forward, остальные по технологии cut-through). Задержка, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него, и вместе с ним определяет общую задержку коммутатора.

Характеристики производительности коммутаторов.

Основными характеристиками коммутатора, измеряющими его производительность, являются:

  • - скорость фильтрации (filtering);
  • - скорость маршрутизации (forwarding);
  • - пропускная способность (throughput);
  • - задержка передачи кадра.

Кроме того, существует несколько характеристик коммутатора, которые в наибольшей степени влияют на указанные характеристики производительности. К ним относятся:

  • - размер буфера (буферов) кадров;
  • - производительность внутренней шины;
  • - производительность процессора или процессоров;
  • - размер внутренней адресной таблицы.

Скорость фильтрации и продвижения кадров - это две основные характеристики производительности коммутатора. Эти характеристики являются интегральными показателями, они не зависят от того, каким образом технически реализован коммутатор.

Скорость фильтрации определяет скорость, с которой коммутатор выполняет следующие этапы обработки кадров:

  • - прием кадра в свой буфер;
  • - уничтожение кадра, так как его порт назначения совпадает с портом-источником.

Скорость продвижения определяет скорость, с которой коммутатор выполняет следующие этапы обработки кадров:

  • - прием кадра в свой буфер;
  • - просмотр адресной таблицы с целью нахождения порта для адреса назначения кадра;
  • - передача кадра в сеть через найденный по адресной таблице порт назначения.

Как скорость фильтрации, так и скорость продвижения измеряются обычно в кадрах в секунду.

Если в характеристиках коммутатора не уточняется, для какого протокола и для какого размера кадра приведены значения скоростей фильтрации и продвижения, то по умолчанию считается, что эти показатели даются для протокола Ethernet и кадров длиной 64 байта (без преамбулы), с полем данных в 46 байт.

Применение в качестве основного показателя скорости работы коммутатора кадров минимальной длины объясняется тем, что такие кадры всегда создают для коммутатора наиболее тяжелый режим работы по сравнению с кадрами другого формата при равной пропускной способности переносимых пользовательских данных.

Поэтому при проведении тестирования коммутатора режим передачи кадров минимальной длины используется как наиболее сложный тест, который должен проверить способность коммутатора работать при наихудшем сочетании для него параметров трафика.

Кроме того, для пакетов минимальной длины скорость фильтрации и продвижения имеют максимальное значение, что имеет немаловажное значение при рекламе коммутатора.

Пропускная способность коммутатора измеряется количеством переданных в единицу времени через его порты пользовательских данных.

Так как коммутатор работает на канальном уровне, то для него пользовательскими данными являются те данные, которые переносятся в поле данных кадров протоколов канального уровня - Ethernet, Token Ring, FDDI и т. п.

Максимальное значение пропускной способности коммутатора всегда достигается на кадрах максимальной длины, так как при этом и доля накладных расходов на служебную информацию кадра гораздо ниже, чем для кадров минимальной длины, и время выполнения коммутатором операций по обработке кадра, приходящееся на один байт пользовательской информации, существенно меньше.

Зависимость пропускной способности коммутатора от размера передаваемых кадров хорошо иллюстрирует пример протокола Ethernet, для которого при передаче кадров минимальной длины достигается скорость передачи в 14880 кадров в секунду и пропускная способность 5.48 Мб/с, а при передаче кадров максимальной длины - скорость передачи в 812 кадров в секунду и пропускная способность 9.74 Мб/c.

Пропускная способность падает почти в два раза при переходе на кадры минимальной длины, и это еще без учета потерь времени на обработку кадров коммутатором.

Задержка передачи кадра измеряется как время, прошедшее с момента прихода первого байта кадра на входной порт коммутатора до момента появления этого байта на выходном порту коммутатора.

Задержка складывается из времени, затрачиваемого на буферизацию байт кадра, а также времени, затрачиваемого на обработку кадра коммутатором - просмотр адресной таблицы, принятие решения о фильтрации или продвижении и получения доступа к среде выходного порта. Величина вносимой коммутатором задержки зависит от режима его работы. Если коммутация осуществляется "на лету", то задержки обычно невелики и составляют от 10 мкс до 40 мкс, а при полной буферизации кадров - от 50 мкс до 200 мкс (для кадров минимальной длины). Коммутатор - это многопортовое устройство, поэтому для него принято все приведенные выше характеристики (кроме задержки передачи кадра) давать в двух вариантах:

  • - первый вариант - суммарная производительность коммутатора при одновременной передаче трафика по всем его портам;
  • - второй вариант - производительность, приведенная в расчете на один порт.

Так как при одновременной передаче трафика несколькими портами существует огромное количество вариантов трафика, отличающегося размерами кадров в потоке, распределением средней интенсивности потоков кадров между портами назначения, коэффициентами вариации интенсивности потоков кадров и т. д., и т. п.

Тогда, при сравнении коммутаторов по производительности необходимо принимать во внимание, для какого варианта трафика получены публикуемые данные производительности. Некоторые лаборатории, постоянно проводящие тестирование коммуникационного оборудования, разработали детальные описания условий тестирования коммутаторов и используют их в своей практике, однако общепромышленными эти тесты пока не стали. В идеальном случае коммутатор, установленный в сети, передает кадры между узлами, подключенными к его портам, с той скоростью, с которой узлы генерируют эти кадры, не внося дополнительных задержек и не теряя ни одного кадра.

В реальной практике коммутатор всегда вносит некоторые задержки при передаче кадров, а также может некоторые кадры терять, то есть не доставлять их адресатам. Из-за различий во внутренней организации разных моделей коммутаторов, трудно предвидеть, как тот или иной коммутатор будет передавать кадры какого-то конкретного образца трафика. Лучшим критерием по-прежнему остается практика, когда коммутатор ставится в реальную сеть и измеряются вносимые им задержки и количество потерянных кадров. Суммарная производительность коммутатора обеспечивается достаточно высокой производительностью каждого его отдельного элемента - процессора порта, коммутационной матрицы, общей шины, соединяющей модули и т. п.

Независимо от внутренней организации коммутатора и способов конвейеризации его операций, можно определить достаточно простые требования к производительности его элементов, которые являются необходимыми для поддержки заданной матрица трафика. Так как производители коммутаторов стараются сделать свои устройства как можно более быстродействующими, то общая внутренняя производительность коммутатора часто с некоторым запасом превышает среднюю интенсивность любого варианта трафика, который можно направить на порты коммутатора в соответствии с их протоколами.

Такой тип коммутаторов называют неблокирующими, т. е., любой вариант трафика передается без снижения его интенсивности. Кроме пропускных способностей отдельных элементов коммутатора, таких как процессоры портов или общая шина, на производительность коммутатора влияют такие его параметры как размер адресной таблицы объем общего буфера или отдельных буферов портов.

Размер адресной таблицы влияет на максимальную емкость адресной таблицы и определяет максимальное количество MAC-адресов, с которыми может одновременно оперировать коммутатор.

Так как коммутаторы чаще всего используют для выполнения операций каждого порта выделенный процессорный блок со своей памятью для хранения экземпляра адресной таблицы, то размер адресной таблицы для коммутаторов обычно приводится в расчете на один порт.

Экземпляры адресной таблицы разных процессорных модулей не обязательно содержат одну и ту же адресную информацию - скорее всего повторяющихся адресов будет не так много, если только распределение трафика каждого порта не полностью равновероятное между остальными портами. Каждый порт хранит только те наборы адресов, которыми он пользуется в последнее время. Значение максимального числа МАС-адресов, которое может запомнить процессор порта, зависит от области применения коммутатора. Коммутаторы рабочих групп обычно поддерживают всего несколько адресов на порт, так как они предназначены для образования микросегментов. Коммутаторы отделов должны поддерживать несколько сотен адресов, а коммутаторы магистралей сетей - до нескольких тысяч, обычно 4000 - 8000 адресов. Недостаточная емкость адресной таблицы может служить причиной замедления работы коммутатора и засорения сети избыточным трафиком. Если адресная таблица процессора порта полностью заполнена, а он встречает новый адрес источника в поступившем пакете, то он должен вытеснить из таблицы какой-либо старый адрес и поместить на его место новый. Эта операция сама по себе отнимет у процессора часть времени, но главные потери производительности будут наблюдаться при поступлении кадра с адресом назначения, который пришлось удалить из адресной таблицы.

Так как адрес назначения кадра неизвестен, то коммутатор должен передать этот кадр на все остальные порты. Эта операция будет создавать лишнюю работу для многих процессоров портов, кроме того, копии этого кадра будут попадать и на те сегменты сети, где они совсем необязательны. Некоторые производители коммутаторов решают эту проблему за счет изменения алгоритма обработки кадров с неизвестным адресом назначения. Один из портов коммутатора конфигурируется как магистральный порт, на который по умолчанию передаются все кадры с неизвестным адресом.

Внутренняя буферная память коммутатора нужна для временного хранения кадров данных в тех случаях, когда их невозможно немедленно передать на выходной порт. Буфер предназначен для сглаживания кратковременных пульсаций трафика.

Ведь даже если трафик хорошо сбалансирован и производительность процессоров портов, а также других обрабатывающих элементов коммутатора достаточна для передачи средних значений трафика, то это не гарантирует, что их производительности хватит при очень больших пиковых значениях нагрузок. Например, трафик может в течение нескольких десятков миллисекунд поступать одновременно на все входы коммутатора, не давая ему возможности передавать принимаемые кадры на выходные порты. Для предотвращения потерь кадров при кратковременном многократном превышении среднего значения интенсивности трафика (а для локальных сетей часто встречаются значения коэффициента пульсации трафика в диапазоне 50-100) единственным средством служит буфер большого объема. Как и в случае адресных таблиц, каждый процессорный модуль порта обычно имеет свою буферную память для хранения кадров. Чем больше объем этой памяти, тем менее вероятны потери кадров при перегрузках, хотя при несбалансированности средних значений трафика буфер все равно рано или поздно переполниться.

Обычно коммутаторы, предназначенные для работы в ответственных частях сети, имеют буферную память в несколько десятков или сотен килобайт на порт.

Хорошо, когда эту буферную память можно перераспределять между несколькими портами, так как одновременные перегрузки по нескольким портам маловероятны. Дополнительным средством защиты может служить общий для всех портов буфер в модуле управления коммутатором. Такой буфер обычно имеет объем в несколько мегабайт.

Общая классификация коммутаторов

Компьютерная сеть это группа компьютеров, соединенных друг с другом каналом связи. Канал обеспечивает обмен данными внутри сети, то есть обмен данными между компьютерами данной группы. Сеть может состоять из двух-трех компьютеров, а может объединять несколько тысяч ПК. Физически обмен данными между компьютерами может осуществляться по специальному кабелю, волоконно-оптическому кабелю или через витую пару .

Объединять компьютеры в сеть и обеспечивать их взаимодействие помогают сетевые аппаратные и аппаратно-программные средства. Эти средства можно разделить на следующие группы по их основному функциональному назначению:

Пассивное сетевое оборудование соединительные разъёмы, кабели, коммутационные шнуры, коммутационные панели, телекоммуникационные розетки и т.д.;

Активное сетевое оборудование преобразователи/адаптеры, модемы, повторители, мосты, коммутаторы, маршрутизаторы и т.д.

В настоящее время развитие компьютерных сетей происходит по следующим направлениям:

Увеличение скорости;

Внедрение сегментирования на основе коммутации;

Объединение сетей при помощи маршрутизации.

Коммутация второго уровня

Рассматривая свойства второго уровня эталонной модели ISO/OSI и его классическое определение, можно увидеть, что данному уровню принадлежит основная доля коммутирующих свойств.

Канальный уровень обеспечивает надежный транзит данных через физический канал. В частности, он решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями, то есть коммутаторов .

Коммутация третьего уровня

Коммутация на третьем уровне? это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов .

Коммутатор - это устройство, функционирующее на втором/третьем уровне эталонной модели ISO/OSI и предназначенное для объединения сегментов сети, работающих на основе одного протокола канального/сетевого уровня. Коммутатор направляет трафик только через один порт, необходимый для достижения места назначения.

На рисунке (см. рисунок 1) представлена классификация коммутаторов по возможностям управления и в соответствии с эталонной моделью ISO/OSI.

Рисунок 1 Классификация коммутаторов

Рассмотрим подробнее назначение и возможности каждого из видов коммутаторов.

Неуправляемый коммутатор? это устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. Он передаёт данные только непосредственно получателю, исключение составляет широковещательный трафик всем узлам сети. Никаких других функций неуправляемый коммутатор выполнять не может.

Управляемые коммутаторы представляют собой более сложные устройства, позволяющие выполнять набор функции второго и третьего уровней модели ISO/OSI. Управление ими может осуществляться посредством Web-интерфейса, командной строки через консольный порт или удаленно по протоколу SSH, а также с помощью протокола SNMP .

Настраиваемые коммутаторы предоставляют пользователям возможность настраивать определенные параметры с помощью простых утилит управления, Web-интерфейса, упрощенного интерфейса командной строки и протокола SNMP.

Коммутаторы уровня 2 анализируют входящие кадры, принимают решение об их дальнейшей передаче и передают их пунктам назначения на основе МАС-адресов канального уровня модели OSI. Основное преимущество коммутаторов уровня 2 - прозрачность для протоколов верхнего уровня. Так как коммутатор функционирует на втором уровне, ему нет необходимости анализировать информацию верхних уровней модели OSI.

Коммутаторы уровня 3 осуществляют коммутацию и фильтрацию на основе адресов канального (уровень 2) и сетевого (уровень 3) уровней модели OSI. Такие коммутаторы динамически решают, коммутировать (уровень 2) или маршрутизировать (уровень 3) входящий трафик . Коммутаторы 3-го уровня выполняют коммутацию в пределах рабочей группы и маршрутизацию между различными подсетями или виртуальными локальными сетями (VLAN).

Свичи подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные свичи позволяют управлять коммутацией на канальном (втором) и сетевом (третьем) уровне модели OSI. Обычно их именуют соответственно, например Layer 2 Switch или просто, сокращенно L2. Управление свичем может осуществляться посредством протокола Web-интерфейса, SNMP, RMON и т.п. Многие управляемые свичи позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство - стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).

Маршрутизатор

Маршрутизатор или роутер- специализированный сетевой компьютер, имеющий минимум два сетевых интерфейса и пересылающий пакеты данных между различными сегментами сети, принимающий решения о пересылке на основании информации о топологии сети и определённых правил, заданных администратором.

Маршрутизатор работает на более высоком «сетевом» уровне 3 сетевой модели OSI, нежели коммутатор (или сетевой мост) и концентратор (хаб), которые работают соответственно на уровне 2 и уровне 1 модели OSI.

Принцип работы маршрутизатора

Обычно маршрутизатор использует адрес получателя, указанный в пакетных данных, и определяет по таблице маршрутизации путь, по которому следует передать данные. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.

Существуют и другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя, фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/расшифрование передаваемых данных и т. д.

Маска подсети

В терминологии сетей TCP/IP маской сети или маской подсети (network mask) называется битовая маска (bitmask), определяющая, какая часть IP-адреса (ip address) узла (host) сети относится к адресу сети, а какая - к адресу самого узла в этой сети. Чтобы получить адрес сети, зная IP-адрес и маску подсети, необходимо применить к ним операцию поразрядной конъюнкции. Например, в случае более сложной маски (битовые операции в IPv6 выглядят одинаково):

IP-адрес: 11000000 10101000 00000001 00000010 (192.168.1.2)

Маска подсети: 11111111 11111111 11111111 00000000 (255.255.255.0)

Адрес сети: 11000000 10101000 00000001 00000000 (192.168.1.0)

Бесклассовая адресация- метод IP-адресации, позволяющий гибко управлять пространством IP-адресов, не используя жёсткие рамки классовой адресации. Использование этого метода позволяет экономно использовать ограниченный ресурс IP-адресов, поскольку возможно применение различных масок подсетей к различным подсетям. Маски подсети являются основой метода бесклассовой маршрутизации (CIDR). При этом подходе маску подсети записывают вместе с IP-адресом в формате «IP-адрес/количество единичных бит в маске». Число после слэша означает количество единичных разрядов в маске подсети.

Назначение маски подсети

Маска назначается по следующей схеме (для сетей класса C), где - количество компьютеров в подсети + 2, округленное до ближайшей большей степени двойки (эта формула справедлива для ≤ 254, для > 254 будет другая формула).

Пример: В некой сети класса C есть 30 компьютеров, маска для такой сети вычисляется следующим образом:

28 - 32 = 224 (0E0h) < = > 255.255.255.224 (0xFFFFFFE0)

Проект локальной сети созданной в программе Cisco Packet Tracer:

Рисунок 1

На рисунке 1 показано логическое построение локальной сети содержащей 16 рабочих станций, 3 свитча, 2 роутера с функцией DHCP-серверов, 2 точки доступа и несколько конечных устройств, подключенных к точкам доступа.

Настройки роутеров:

Рисунок 2

Рисунок 3

Настройки свитчей:

Рисунок 4

Рисунок 5

Рисунок 6

Настройки точек доступа:

Рисунок 7

Рисунок 8


Заключение

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см), вставляющегося в ZIF-сокет (AMD) или на подпружинивающую конструкцию - LGA (Intel). Особенностью разъёма LGA является то, что выводы перенесены с корпуса процессора на сам разъём - socket, находящийся на материнской плате. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов. Современные процессоры используют от 1 до 16 управляющих блоков и от 4 до 64 операционных блоков. При переходе к асинхронной схемотехнике будет оправдано использование нескольких десятков управляющих блоков и нескольких сотен операционных блоков. Такой переход вместе с соответствующим увеличением числа блоков обеспечит увеличение пиковой производительности более чем на два порядка и средней производительности более чем на порядок.

Наряду с материалами, описывающими возможные перспективы производства мультигигабитных чипов PCM по 45- или 32-нм процессу, компания ST представила прототип 128-Мбит чипа PCM, изготовленный по 90-нм технологии. К преимуществам PRAM-памяти относятся малая площадь ячейки, хорошие электрические характеристики и высокая надежность.

В ближайшие 10-20 лет, скорее всего, изменится материальная часть процессоров ввиду того, что технологический процесс достигнет физических пределов производства. Возможно, это будут:

Оптические компьютеры - в которых вместо электрических сигналов обработке подвергаются потоки света (фотоны, а не электроны).

Квантовые компьютеры, работа которых всецело базируется на квантовых эффектах. В настоящее время ведутся работы над созданием рабочих версий квантовых процессоров.

Молекулярные компьютеры - вычислительные системы, использующие вычислительные возможности молекул (преимущественно, органических). Молекулярными компьютерами используется идея вычислительных возможностей расположения атомов в пространстве.

Твердотельный накопитель

Твердотéльный накопитель (англ. SSD, solid-state drive) - компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер.

Различают два вида твердотельных накопителей: SSD на основе памяти, подобной оперативной памяти компьютеров, и SSD на основе флеш-памяти.

В настоящее время твердотельные накопители используются в компактных устройствах: ноутбуках, нетбуках, коммуникаторах и смартфонах, но могут быть использованы и в стационарных компьютерах для повышения производительности. Некоторые известные производители переключились на выпуск твердотельных накопителей уже полностью, например, Samsung продал бизнес по производству жёстких дисков компании Seagate. Существуют и так называемые гибридные жесткие диски, появившиеся, в том числе, из-за текущей, пропорционально более высокой стоимости твердотельных накопителей. Такие устройства сочетают в одном устройстве накопитель на жёстких магнитных дисках (HDD) и твердотельный накопитель относительно небольшого объёма, в качестве кэша (для увеличения производительности и срока службы устройства, снижения энергопотребления).

Эти накопители, построены на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость. Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели - системами резервного и/или оперативного копирования. Примером таких накопителей является I-RAM. Пользователи, обладающие достаточным объёмом оперативной памяти, могут организовать виртуальную машину и расположить её жёсткий диск в ОЗУ и оценить производительность.

Еще в первом номере журнала LAN, в разделе "Первые уроки", мы опубликовали статью С. Штайнке "Ethernet-коммутация" об основах данной технологии и не ошиблись с выбором: за последующие три года коммутация Ethernet стала одной из самых "горячих" технологий. Позднее мы не раз возвращались к этой теме (см., в частности, статью Д. Ганьжи "Коммутаторы в локальных сетях" в апрельском номере LAN за 1997 год). Первая статья появилась в то время, когда Fast Ethernet еще боролась за место под солнцем с 100VG-AnyLAN, и исход борьбы был далеко не ясен, поэтому она была посвящена прежде всего коммутации на 10 Мбит/с. Вторая из названных статей касалась, главным образом, общих аспектов коммутации. Учитывая перечисленные обстоятельства, а также важность коммутации как таковой, мы сочли возможным и даже необходимым вернуться к этой теме еще раз, тем более что цикл статей об Ethernet без ее рассмотрения был бы не полон.

ЧТО ТАКОЕ КОММУТАТОР?

Коммутатор представляет собой, по сути, многопортовый мост, поэтому, как и мост, он принимает поступающие пакеты, временно сохраняет их и затем передает на другой порт в соответствии с адресом получателя данного пакета. Коммутаторы можно использовать для соединения различных локальных сетей, для сегментации локальной сети (т. е. уменьшения числа конкурирующих за среду узлов в одном домене коллизий) и для преодоления ограничений на диаметр сегмента. Последнее применение особенно важно в случае сетей Fast Ethernet, где диаметр сегмента не может превышать 205 м для кабеля витой пары.

Коммутаторы используют концепцию "виртуального соединения" для организации временного соединения между отправителем и получателем. После передачи пакета виртуальное соединение разрывается. Коммутатор ведет таблицу, где запоминает, какие станции (точнее, какие MAC-адреса) подключены к какому физическому порту. На Рисунке 1 абонент с адресом А отправляет пакет получателю с адресом D. По таблице коммутатор определяет, что станция с адресом А подключена к порту 1, а станция с адресом D - к порту 4. На основании этих данных он устанавливает виртуальное соединение для передачи сообщения между портами 1 и 4.

Рисунок 1.
На основании адреса получателя коммутатор определяет, на какой порт передавать поступивший пакет.

В коммутаторе Ethernet передача данных между непересекающимися парами портов может происходить одновременно. Например, узел А может передавать пакет узлу D в то же время, когда узел B отправляет пакет узлу C. Оба диалога ведутся одновременно, поэтому в случае Ethernet совокупная пропускная способность (производительность) коммутатора в нашем примере составляет 20 Мбит/с. Она определяется посредством суммирования доступной для каждого соединения пропускной способности, скажем в случае 12-портового коммутатора Ethernet теоретически она равняется 60 Мбит/с. Для сравнения повторитель Ethernet всегда имеет одну и ту же совокупную пропускную способность в 10 Мбит/с, независимо от числа портов. К тому же реальная пропускная способность концентратора может оказаться намного меньше, когда несколько устройств конкурируют за доступ к среде передачи. Однако и реальная совокупная пропускная способность коммутатора может оказаться ниже теоретически рассчитанной из-за недостатков конструкции коммутатора, например из-за неадекватной пропускной способности внутренней шины. В этом случае говорят, что коммутатор имеет блокирующую архитектуру.

АРХИТЕКТУРА КОММУТАТОРА

Архитектура коммутатора определяется четырьмя основными факторами - типом портов, размерами буфера, механизмом продвижения пакетов и внутренней шиной (см. Рисунок 2).

Рисунок 2.
При всем многообразии конструкции коммутаторов базовая архитектура этих устройств определяется четырьмя компонентами: портами, буферами, внутренней шиной и механизмом продвижения пакетов.

Порты могут иметь скорость 10 и 100 Мбит/с и работать в полудуплексном и полнодуплексном режиме. Многие модели старшего класса могут также содержать порты FDDI, ATM, Gigabit Ethernet и т. п., но здесь этой темы мы касаться не будем, тем более что уже кратко рассматривали ее ранее.

Наличие буферов достаточной емкости имеет большое значение для коммутации, в частности в случае использования в сети протоколов по типу скользящего окна, когда абонент подтверждает получение не каждого пакета, а их серии. Вообще говоря, чем больше емкость буфера, тем лучше, однако - тем и дороже. Поэтому разработчикам приходится выбирать между производительностью и ценой. Но у них есть и другое решение - управление потоками (см. ниже).

Механизм продвижения пакетов может быть одним из следующих трех: коммутация с промежуточной буферизацией, сквозная коммутация и гибридная сквозная коммутация. Мы уже неоднократно их рассматривали, поэтому лишь напомним, что они собой представляют. В первом случае пакет полностью сохраняется в буфере, прежде чем быть переданным далее, поэтому данный метод вносит наибольшую задержку, но и не позволяет ошибочным пакетам выходить за пределы сегмента. Во втором случае, считав адрес получателя, коммутатор сразу же передает кадр дальше. Как нетрудно понять, он обладает прямо противоположными достоинствами и недостатками - малой задержкой и отсутствием адекватной проверки кадров.

В третьем случае коммутатор считывает первые 64 байта пакета, прежде чем передавать его дальше. Таким образом, он действует как коммутатор с промежуточной буферизацией по отношению к коротким кадрам и как коммутатор со сквозной коммутацией по отношению к длинным кадрам. Методы продвижения кадров проиллюстрированы на Рисунке 3.

(1x1)

Рисунок 3.
Механизмы продвижения пакетов различаются тем, в какой момент пакет передается дальше.

Архитектура внутренней шины определяет, каким образом кадры передаются с одного порта на другой с помощью внутренней электроники коммутатора. Она имеет решающее значение для эффективности работы коммутатора: производитель может заявить, что внутренняя шина имеет пропускную способность 1-2 Гбит/с, но при этом умолчать, что она достигается лишь при определенном виде трафика. Например, коммутатор с буферами малой емкости может показывать свою максимальную производительность, только если все порты работают на одной и той же скорости, а трафик распределен равномерно между всеми портами.

Шина может обслуживать порты циклически или по приоритетам. При циклическом обслуживании бездействующий порт пропускается. Такая архитектура наилучшим образом подходит для случаев, когда трафик через каждый порт примерно одинаков. При обслуживании по приоритетам активные порты конкурируют друг с другом за внутреннюю шину. Такого рода архитектура лучше всего подходит при работе с коммутаторами, порты которых имеют разную скорость. Некоторые производители предлагают коммутаторы с возможностью изменения типа архитектуры шины.

ПОЛНОДУПЛЕКСНЫЙ ETHERNET

Обычный Ethernet (и Fast Ethernet) представляет собой разделяемую среду передачи, а все разделяемые сети являются полудуплексными по определению: в конкретный момент времени только одна станция имеет право осуществлять передачу, а все остальные должны ее слушать. Или, иначе говоря, станция может выполнять прием или передачу, но не обе эти задачи одновременно.

Широкое распространение четырехпарной проводки открыло принципиальную возможность для передачи и приема данных по отдельным путям (разным парам), каковой не было, когда физическая среда передачи представляла собой коаксиальный кабель.

В случае, когда к каждому порту коммутатора подключен только один узел (подчеркнем, один), конкуренция за доступ к среде передачи отсутствует, поэтому никаких коллизий не может возникнуть в принципе и схема множественного доступа CSMA/CD больше не нужна.

Таким образом, если два узла подключены напрямую к портам коммутатора, то они могут вести прием и передачу данных одновременно по разным парам, в результате теоретическая пропускная способность такого соединения составляет 20 Мбит/с в случае Ethernet и 200 Мбит/с в случае Fast Ethernet. Кроме того, благодаря отсутствию конкуренции, реальная средняя пропускная способность соединения приближается к номинальной и составляет свыше 80% от вышеприведенных значений.

АВТОМАТИЧЕСКОЕ СОГЛАСОВАНИЕ

Некоторые коммутаторы имеют порты как на 10 Мбит/с, так и на 100 Мбит/с (о том, к каким проблемам это может привести, см. в разделе "Предотвращение перегрузок"). Более того, они способны автоматически определять, на какой скорости работают подключенные к нему станции, концентраторы и т. п. Наконец, если только один узел подключен к порту коммутатора, то обе стороны могут выбрать полнодуплексный режим работы (при условии, что он поддерживается обоими).

Один и тот же стандартный соединитель RJ-45 может передавать сигналы 10BaseT, полнодуплексного 10BaseT, 100BaseTX, полнодуплексного 100BaseTX и 100BaseT4. Поэтому IEEE предложил схему автоматического согласования режима работы под названием nWAY для определения того, по какому стандарту работает устройство на другом конце кабеля. Порядок приоритетов для режимов работы следующий:

  • полнодуплексный 100BaseTX;
  • 100BaseT4;
  • 100BaseTX;
  • полнодуплексный 10BaseT;
  • 10BaseT.

При автосогласовании "договаривающиеся стороны" используют аналог импульсов Link Integrity в 10BaseT под названием Fast Link Pulse. Такие импульсы отправляют оба устройства, и по ним каждое из них определяет, в каком из режимов передачи способна работать другая сторона.

Многие коммутаторы поддерживают все пять возможных режимов, поэтому, если даже подключенный узел не имеет функции автосогласования, порт коммутатора будет взаимодействовать с ним на той максимальной скорости, на которую он способен. Кроме того, реализация данной функции весьма проста и не ведет к какому-либо заметному удорожанию оборудования. Наконец, стандарт предусматривает возможность отключения автосогласования, так что пользователь может установить нужный режим передачи вручную, если это ему необходимо.

ПРЕДОТВРАЩЕНИЕ ПЕРЕГРУЗОК

Коммутаторам часто приходится выполнять роль моста между портами на 10 и 100 Мбит/с, например, когда коммутатор имеет один высокоскоростной порт для подключения сервера и некоторое количество портов на 10 Мбит/с для подключения рабочих станций. В случае, когда трафик передается с порта на 10 Мбит/с порту на 100 Мбит/с никаких проблем не возникает, но вот если трафик идет в обратном направлении... Поток данных в 100 Мбит/с

на порядок превосходит возможности порта на 10 Мбит/с, поэтому коммутатор должен сохранять избыточные данные в своих внутренних буферах, если он располагает для этого достаточной памятью. Например, пусть первый порт подключен к серверу с платой на 100 Мбит/с, а второй порт - к клиенту с платой на 10 Мбит/с. Если сервер отправляет клиенту один за другим 16 пакетов подряд, то вместе они составляют в среднем 24 Кбайт данных. Передача кадра размером 1,5 Кбайт занимает 122 мкс в случае Fast Ethernet и 1220 мкс в случае Ethernet. Таким образом, первый порт получит десять кадров, прежде чем один кадр сможет быть отправлен через второй порт, т. е. первый порт должен иметь буфер емкостью не менее 24 Кбайт. Однако если поток достаточно длинный, то никаких буферов не хватит. Один из способов избежать перегрузки состоит в управлении потоками. Концепция управления потоками (или предотвращения перегрузок) предусматривает вызов искусственной коллизии на высокоскоростном порту, в результате которой отправитель приостанавливает на какое-то время передачу данных в соответствии с алгоритмом экспотенциального отката. В нашем примере первый порт определит, что его буфер заполнился, и пошлет сообщение о перегрузке назад отправителю. Последний воспримет данное сообщение как коллизию и приостановит передачу. Коммутатор будет продолжать посылать сообщения о перегрузке, пока буфер не освободится. Такого рода контроль потоков осуществляется только коммутаторами с полудуплексными портами.

УПРАВЛЕНИЕ КОММУТАТОРОМ

Контроль за функционированием коммутатора - одна из самых серьезных проблем, стоящих как перед производителями оборудования, так и перед администраторами сетей. В случае разделяемых сетей управление не представляет особых сложностей, так как трафик через один порт пересылается на все остальные порты концентратора. В случае же коммутатора трафик между парами портов каждого виртуального соединения различен, поэтому задача сбора статистических данных о работе маршрутизатора намного усложняется. Производители поддерживают, как правило, два следующих метода сбора статистики.

Один из них состоит во включении управления в архитектуру объединительной шины коммутатора. Статистика собирается о каждом передаваемом по шине пакете и сохраняется в управляющем устройстве в соответствии с его MAC-адресом. Программа управления может обратиться к этому устройству за статистикой по локальной сети. Единственная проблема с таким методом - каждый производитель коммутаторов реализует свою собственную схему, поэтому совместимость ограничивается обычно статистикой SNMP.

Второй метод известен как зеркальное копирование портов. В этом случае весь трафик через заданный порт копируется на выделенный порт управления. Данный порт подключается обычно к терминалу управления, а тот уже собирает статистику по каждому конкретному порту. Однако подобный метод имеет то ограничение, что он не позволяет видеть, что происходит в это время на других портах коммутатора.

Некоторые производители коммутаторов включают в свои модели, как правило, старшего класса базы управляющей информации для удаленного мониторинга (Remote Monitor MIB, RMON) с целью сбора статистики о функционировании каждого порта коммутатора. Но очень часто они включают далеко не все определенные стандартом группы, а, кроме того, поддержка RMON MIB значительно увеличивает стоимость коммутатора.

РАЗНОВИДНОСТИ КОММУТАТОРОВ

Коммутаторы можно классифицировать по-разному. Если исходить из назначения, то все их можно разделить на две большие группы - коммутаторы для рабочих групп и коммутаторы для магистрали.

Отличительной особенностью многих коммутаторов для рабочих групп является небольшое число поддерживаемых каждым портом адресов. Всякий порт действует как мост, поэтому он должен знать, к каким адресам может получить доступ через другие порты. Подобные списки соответствия портов MAC-адресам могут оказаться весьма длинными и занимать значительный объем дорогостоящей памяти. Поэтому коммутаторы для рабочих групп поддерживают обычно не слишком много MAC-адресов. Некоторые из них вообще запоминают только один адрес для каждого порта - в этом случае к порту может быть подключен один и только один узел.

Магистральные коммутаторы отличаются большим числом высокоскоростных портов, в том числе полнодуплексных, наличием дополнительных функций управления сетью типа виртуальных локальных сетей и расширенной фильтрации пакетов и т. п. В общем случае магистральный коммутатор намного дороже и производительней, чем его аналог для рабочих групп.

ДОСТОИНСТВА КОММУТАЦИИ

Коммутация стала столь популярной технологией потому, что она позволяет увеличить доступную каждому узлу реальную пропускную способность. В результате без изменения базовой технологии и существенной перекройки топологии сети компании смогли расчистить заторы трафика и расширить узкие места. Кроме того, она позволяет увеличить протяженность сети. Особенно это обстоятельство ценно в случае Fast Ethernet - например посредством установки моста (двухпортового коммутатора, с точки зрения некоторых производителей) между двумя концентраторами расстояние между конечными станциями может быть увеличено до 400 м.

Дмитрий Ганьжа - ответственный редактор LAN. С ним можно связаться по адресу: .


От разделяемых к коммутируемым сетям


Будучи предназначенными для работы с небольшим числом пользователей, настольные коммутаторы могут служить для замены концентраторов 10Base-T. Обычно настольные коммутаторы имеют 24 порта, каждый из которых поддерживает персональный (private) канал с полосой 10 Мбит/сек для подключения одного узла (например, рабочей станции). Дополнительно такой коммутатор может иметь один или несколько портов 100Base-T или FDDI для подключения к магистрали (backbone) или серверу.

Объединяя в себе возможности технологий 10 Мбит/сек и 100 Мбит/сек, настольные коммутаторы минимизируют блокировку при попытке одновременного подключения нескольких узлов к единственному скоростному порту (100 Мбит/сек). В среде клиент-сервер одновременно несколько узлов могут получить доступ к серверу, подключенному через порт 100 Мбит/сек.

Настольные коммутаторы просты в установке и обслуживании, зачастую содержат встроенные plug-and-play программы и имеют упрощенный интерфейс установки параметров. Стоимость в пересчете на один порт составляет - $150, менее чем вдвое превосходя стоимость порта в концентраторах 10Base-T.

Магистральные коммутаторы

На вершине иерархии коммутаторов Ethernet находятся магистральные коммутаторы - устройства для соединения сетей или сегментов, поддерживающие множественную адресацию для своих портов. Такие коммутаторы используются для соединения концентраторов 10Base-T, настольных и групповых коммутаторов, серверов.

Для пользователей, желающих увеличить доступную полосу за счет сегментации, магистральные коммутаторы служат простой, высокопроизводительной и эффективной по стоимости альтернативой маршрутизаторам. Магистральные коммутаторы могут одновременно передавать трафик между несколькими сегментами с полным использованием полосы пропускания среды.

Кроме того, магистральные коммутаторы могут фильтровать пакеты на основе признаков, отличающихся от адресов. Например, администратор может запретить передачу широковещательных пакетов NetWare рабочим станциям Unix за счет фильтрации по протоколу.

Для магистральных коммутаторов характерно модульное устройство и способность поддерживать до нескольких тысяч MAC-адресов на каждый порт. Установка таких коммутаторов более сложна по сравнению с настольными коммутаторами, главным образом за счет необходимости настройки функций маршрутизации. Резервные источники питания, горячая замена модулей, поддержка протокола Spanning Tree являются обязательными для магистральных коммутаторов элементами, обеспечивающими все возможности технологий коммутации, включая виртуальные сети.

При совместном использовании с настольными коммутаторами (взамен концентраторов 10Base-T), магистральные коммутаторы обеспечивают сквозную (end-to-end) коммутацию, позволяющую избежать большинства проблем, связанных с использованием разделяемой среды (большое количество коллизий, размножение ошибочных пакетов, снижение уровня безопасности). В большинстве мощных приложений магистральные коммутаторы 100 Мбит/сек могут служить высокоскоростной магистралью между настольными коммутаторами 100/10 Мбит/сек и серверами, подключенными по каналу 100 Мбит/сек.

Стоимость магистральных коммутаторов в расчете на один порт составляет $750 - $1500.

Коммутаторы для рабочих групп

Коммутаторы рабочих групп используются главным образом для соединения изолированных настольных коммутаторов или концентраторов 10Base-T с остальными частями сети. Эти устройства объединяют в себе свойства как настольных, так и магистральных коммутаторов.

Подобно магистральным коммутаторы рабочих групп могут поддерживать множественную адресацию (до нескольких тысяч MAC-адресов на коммутатор) и позволяют использование в качестве маршрутизаторов. Как и настольные коммутаторы они могут служить для подключения к порты отдельных узлов.

Хотя обычно коммутаторы рабочих групп не поддерживают фильтрацию протоколов и другие функции маршрутизации, некоторые коммутаторы этого типа поддерживают протокол Spanning Tree, SNMP и виртуальные сети.

Соединение 10 Мбит/сек между коммутатором и пользовательским узлом (рабочей станцией) чаще всего выполняется кабелем на основе неэкранированных скрученных пар (UTP), а для скоростного порта используются скрученные пары или оптический кабель. Групповые коммутаторы могут поддерживать несколько тысяч MAC-адресов на устройство с портами, используемыми для подключения небольшого числа концентраторов или магистралей. Групповые коммутаторы должны в таком случае поддерживать Spanning Tree для упрощения конфигурации сети и обеспечения возможности дублирования каналов без образования петель в сети.

Ключевой сферой применения коммутаторов для рабочих групп является замена концентраторов 10Base-T и маршрутизаторов, что позволит пользователям перейти от работы с разделяемой средой к персональным (private) каналам за счет одновременной поддержки разделяемых и персональных соединений 10 Мбит/сек. Некоторые групповые коммутаторы имеют средства преодоления сбоев (fault-tolerant functions), однако групповые коммутаторы никогда не поддерживают фильтрации протоколов.

Стоимость в пересчете на один порт для коммутаторов рабочих групп составляет $250 - $1000.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!