Настройка оборудования и программного обеспечения

Определители определение свойства. Вычисление определителей


Квадратной матрице А порядка n можно сопоставить число det А (или |A |, или ), называемое ее определителем , следующим образом:

Определитель матрицы A также называют ее детерминантом . Правило вычисления детерминанта для матрицы порядка N является довольно сложным для восприятия и применения. Однако известны методы, позволяющие реализовать вычисление определителей высоких порядков на основе определителей низших порядков. Один из методов основан на свойстве разложения определителя по элементам некоторого ряда (свойство 7). При этом заметим, что определители невысоких порядков (1, 2, 3) желательно уметь вычислять согласно определению.

Вычисление определителя 2-го порядка иллюстрируется схемой:


Пример 4.1. Найти определители матриц

При вычислении определителя 3-го порядка удобно пользоваться правилом треугольников (или Саррюса), которое символически можно записать так:

Пример 4.2. Вычислить определитель матрицы

det А = 5*1*(-3) + (-2)*(-4)*6 + 3*0*1 — 6*1*1 — 3*(-2)*(-3) — 0*(-4)*5 = -15+48-6-18 = 48-39 = 9.

Сформулируем основные свойства определителей, присущие определителям всех порядков. Некоторые из этих свойств поясним на определителях 3-го порядка.

Свойство 1 («Равноправность строк и столбцов»). Определитель не изменится, если его строки заменить столбцами, и наоборот. Иными словами,

В дальнейшем строки и столбцы будем просто называть рядами определителя .

Свойство 2 . При перестановке двух параллельных рядов определитель меняет знак.

Свойство 3 . Определитель, имеющий два одинаковых ряда, равен нулю.

Свойство 4 . Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.

Из свойств 3 и 4 следует, что если все элементы некоторого ряда пропорциональны соответствующим элементам параллельного ряда, то такой определитель равен нулю.

Действительно,

Свойство 5 . Если элементы какого-либо ряда определителя представляют собой суммы двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.

Например,

Свойство 6. Элементарные преобразования определителя»). Определитель не изменится, если к элементам одною ряда прибавить соответствующие элементы параллельного ряда, умноженные па любое число.

Пример 4.3 . Доказать, что

Решение: Действительно, используя свойства 5, 4 и 3 подучим

Дальнейшие свойства определителей связаны с понятиями минора и алгебраического дополнения.

Минором некоторого элемента аij определителя n- го порядка называется определитель n — 1-го порядка, полученный из исходного путем вычеркивания строки и столбца, па пересечении которых находится выбранный элемент. Обозначается mij

Алгебраическим дополнением элемента aij определителя называется его минор, взятый со знаком «плюс», если сумма i + j четное число, и со знаком «минус», если эта сумма нечетная. Обозначается Aij :

Свойство 7 («Разложение определителя по элементам некоторого ряда»). Определитель равен сумме произведений элементов некоторого ряда на соответствующие им алгебраические дополнения.

ОПРЕДЕЛИТЕЛЬ
или детерминант, - в математике запись чисел в виде квадратной таблицы, в соответствие которой ставится другое число ("значение" определителя). Очень часто под понятием "определитель" имеют в виду как значение определителя, так и форму его записи. Определители позволяют удобно записывать сложные выражения, возникающие, например, при решении линейных уравнений в аналитической геометрии и в математическом анализе. Открытие определителей приписывают японскому математику С. Кова (1683) и, независимо, Г. Лейбницу (1693). Современная теория восходит к работам Ж. Бине, О. Коши и К. Якоби в начале 19 в. Простейший определитель состоит из 4 чисел, называемых элементами и расположенных в виде 2-х строк и 2-х столбцов. О таком определителе говорят, что он 2-го порядка. Например, таков определитель

Значение которого равно 2*5 - 3*1 (т.е. 10 - 3 или 7). В общем случае определитель 2-го порядка принято записывать в виде

А его значение равно a1b2 - a2b1, где a и b - числа или функции. Определитель 3-го порядка состоит из 9 элементов, расположенных в виде 3-х строк и 3-х столбцов. В общем случае определитель n-го порядка состоит из n2 элементов, и обычно его записывают как


Первый индекс каждого элемента указывает номер строки, второй - номер столбца, на пересечении которых стоит этот элемент, поэтому aij - элемент i-й строки и j-го столбца. Часто такой определитель записывают в виде |aij|. Один из методов вычисления определителя, почти всегда используемый при вычислении определителей высокого порядка, состоит в разложении по "минорам". Минором, соответствующим любому элементу определителя, называется определитель меньшего на 1 порядка, получаемый из исходного вычеркиванием строки и столбца, на пересечении которых стоит этот элемент. Например, минором, соответствующим элементу a2 из определителя


"Алгебраическим дополнением" элемента называется его минор, взятый со знаком плюс, если сумма номеров строки и столбца, на пересечении которых стоит элемент, четна, и со знаком минус, если она нечетна. В приведенном выше примере элемент a2 состоит в 1-м столбце и во 2-й строке; сумма (1 + 2) нечетна, и поэтому алгебраическое дополнение элемента a2 равно его минору, взятому со знаком минус, т.е.

Значение определителя равно сумме произведений элементов любой строки (или любого столбца) на их алгебраические дополнения. Например, определитель


разложенный по первому столбцу, имеет вид


а его разложение по второй строке, имеет вид


Вычислив каждый минор и умножив его на коэффициент, нетрудно убедиться в том, что оба выражения совпадают. Значение определителя. Под значением определителя

Принято понимать сумму всех произведений из n элементов, т.е.


В этой формуле суммирование ведется по всем перестановкам j1, ј, jn чисел 1, 2, ј, n и перед членом ставится знак плюс, если перестановка четна, и минус, если эта перестановка нечетна. Такая сумма насчитывает ровно n! членов, половина которых берется со знаком плюс, половина - со знаком минус. Каждый член суммы содержит по одному члену из каждого столбца и каждой строки определителя. Можно доказать, что эта сумма совпадает с выражением, получаемым при разложении определителя по минорам.
Свойства определителя. Среди наиболее важных свойств определителя назовем следующие. (i) Если все элементы любой строки (или любого столбца) равны нулю, то и значение определителя равно нулю:


(ii) Если элементы двух строк (или двух столбцов) равны или пропорциональны, то значение определителя равно нулю:


(iii) Значение определителя не изменится, если все его строки и столбцы поменять местами, т.е. записать первую строку в виде первого столбца, вторую строку - в виде второго столбца и т.д. (такая операция называется транспонированием). Например,


(iv) Значение определителя не изменится, если к элементам одной строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на произвольный множитель. В следующем примере элементы второй строки умножаются на -2 и прибавляются к элементам первой строки:


(v) Если поменять местами две строки (или два столбца), то определитель изменит знак:


(vi) Если все элементы одной строки (или одного столбца) содержат общий множитель, то этот множитель можно вынести за знак определителя:


Пример. Вычислим значение следующего определителя 4-го порядка:


Прибавим к 1-й строке 4-ю строку:


Вычтем 1-й столбец из 4-го столбца:


Умножим 3-й столбец на 3 и вычтем из 4-го столбца:


Если угодно, то строки и столбцы можно поменять местами:


Разложим определитель по элементам четвертой строки. Три элемента этой строки равны нулю, ненулевой элемент стоит в третьем столбце, а поскольку сумма (3 + 4) нечетна, его алгебраическое дополнение имеет знак минус. В результате получаем:


Минор можно разложить по элементам третьей строки: два ее элемента равны нулю, а отличный от нуля элемент стоит в третьем столбце; сумма (3 + 3) четна, поэтому предыдущее равенство можно продолжить:

Применения. Решение системы уравнений


можно получить, если первое уравнение умножить на b2, второе - на b1, а затем вычесть одно уравнение из другого. Проделав эти операции, мы получим

Или, если


то


Такая запись решения с помощью определителей допускает обобщение на случай решения системы n линейных уравнений с n неизвестными; каждый определитель будет n-го порядка. Определителем системы линейных уравнений


будет


Заметим, что если D = 0, то уравнения либо несовместны, либо не являются независимыми. Поэтому предварительное вычисление определителя D позволяет проверить, разрешима ли система линейных уравнений.
Определители в аналитической геометрии. Общее уравнение конического сечения представимо в виде

Определитель


называется дискриминантом. Если D = 0, то кривая вырождается в пару параллельных или пересекающихся прямых либо в точку (см. также КОНИЧЕСКИЕ СЕЧЕНИЯ). Другой пример: площадь треугольника A с вершинами в точках (обход - против часовой стрелки) (x1, y1), (x2, y2) и (x3, y3) определяется выражением


Связь определителей с матрицами. Матрицей называется запись массива чисел в виде прямоугольной таблицы. Определители связаны с квадратными матрицами; например, определитель матрицы


Если A, B и С - квадратные матрицы и, то |A|*|B| = |C|.
См. также АЛГЕБРА АБСТРАКТНАЯ .
Якобиан. Если x = f (u, v), y = g (u, v) - преобразование координат, то определитель

Называется якобианом или определителем Якоби этого преобразования. Если J не равен 0 в некоторой точке, то в ее окрестности уравнения преобразования можно однозначно разрешить относительно u и v, представив их как функции от x и y.
См. МАТЕМАТИЧЕСКИЙ АНАЛИЗ .

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ОПРЕДЕЛИТЕЛЬ" в других словарях:

    ОПРЕДЕЛИТЕЛЬ, определителя, муж. (книжн.). 1. То, что определяет, выражает собою что нибудь. 2. Книга, служащая для справок при определении чего нибудь (научн.). Определитель растений. Определитель грибов. 3. Выражение, составляемое из… … Толковый словарь Ушакова

    - (детерминант) составленное по определенному правилу из n2 чисел математическое выражение, применяемое при решении и исследовании систем алгебраических уравнений 1 й степени. Число n называется порядком определителя. Так, определитель 2 го порядка … Большой Энциклопедический словарь

    Опознаватель, гессиан, минор, детерминант Словарь русских синонимов. определитель сущ., кол во синонимов: 10 автоопределитель (1) … Словарь синонимов

    ОПРЕДЕЛИТЕЛЬ - (детерминант) составленное по определённому правилу из n2 чисел математическое выражение, применяемое при решении и исследовании систем алгебраических уравнений 1 й степени. Число п называется порядком определителя. Так, определитель 2 го порядка … Большая политехническая энциклопедия

    ОПРЕДЕЛИТЕЛЬ, я, муж. 1. Устройство для определения чего н., а также вообще то, с помощью чего можно что н. точно определить, установить. Телефон с определителем номера. О. ритма. 2. Книга для справок при определении чего н. (спец.). О. растений … Толковый словарь Ожегова

    - (детерминант) квадратнойматрицы А = ||aij|| порядка n, detA многочлен … Физическая энциклопедия

    определитель - — Тематики электросвязь, основные понятия EN determinant … Справочник технического переводчика

    У этого термина существуют и другие значения, см. Определитель (значения). Определитель (или детерминант) одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной матрицы (то есть такой, у … Википедия

    определитель - 3.4.6 определитель (auxiliary): Код вспомогательного класса УДК. Источник … Словарь-справочник терминов нормативно-технической документации

    Я; м. 1. Книжн. То, чем определяется, обусловливается что л. Звук может быть определителем скорости. Главным определителем времени является движение Солнца в космическом пространстве. 2. Спец. Руководство (книга или таблица) для определения чего… … Энциклопедический словарь

Книги

  • Определитель покрытосеменных древесных растений по плодам и семенам , Синицын Евгений Михайлович. Определитель состоит из двух частей. Первая часть представляет собой таблицу для определения родов, а вторая включает таблицы для определения видов покрытосеменных древесных растений по…

Можно поставить в соответствие некоторое число , вычисляемое по определенному правилу и называемое определителем .

Необходимость введения понятия определителя - числа , характеризующего квадратную матрицу порядка n , тесно связано с решением систем линейных алгебраических уравнений .

Определитель матрицы А будем обозначать: |А | или D.

Определителем матрицы первого порядка А = (а 11) называется элемент а 11 . Например, для А = (-4) имеем |А | = -4.

Определителем матрицы второго порядка называется число , определяемое по формуле

|А | = .

Например, |А | = .

Словами это правило можно записать так: со своим знаком надо взять произведение элементов, соединенных главной диагональю , и произведения элементов, соединенных вершинами треугольников, у которых основание параллельно главной диагонали . С обратным знаком берутся аналогичные произведения, только относительно побочной диагонали.

Например,

Определение определителя матрицы n -го порядка давать не будем, а лишь покажем метод его нахождения.

В дальнейшем, вместо слов определитель матрицы n -го порядка будем говорить просто определитель n -го порядка . Введем новые понятия.

Пусть дана квадратная матрица n -го порядка.

Минором М ij элемента а ij матрицы А называется определитель (n -1)-го порядка, полученный из матрицы А вычеркиванием i -ой строки и j -го столбца.

Алгебраическим дополнением А ij элемента а ij матрицы А называется его минор, взятый со знаком (-1) i+j:

А ij = (-1) i + j М ij ,

т.е. алгебраическое дополнение либо совпадает со своим минором, когда сумма номеров строки и столбца - четное число, либо отличается от него знаком, когда сумма номеров строки и столбца - нечетное число.

Например, для элементов а 11 и а 12 матрицы А = миноры

М 11 = А 11 = ,

М 12 = ,

а А 12 = (-1) 1+2 М 12 = -8.

Теорема (о разложении определителя) . Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения, т.е.

|А | = а i1 A i1 + а i2 A i2 + … + а in A in ,
для любого i = 1, 2, …, n

|А | = а 1j A 1j + а 2j A 2j + … + а nj A nj ,

для любого j = 1, 2, …, n


Первая формула называется i -ой строки, а вторая - разложением определителя по элементам j -го столбца.

Нетрудно понять, что с помощью этих формул любой определитель n -го порядка можно свести к сумме определителей, порядок которых будет на 1 меньше и т.д. пока не дойдем до определителей 3-го или 2-го порядков, вычисление которых уже не представляет трудности.

Для нахождения определителя могут быть применены следующие основные свойства:

1. Если какая-нибудь строка (или столбец) определителя состоит из нулей, то и сам определитель равен нулю.

2. При перестановке любых двух строк (или двух столбцов) определитель умножается на -1.

3. Определитель с двумя одинаковыми или пропорциональными строками (или столбцами) равен нулю.

4. Общий множитель элементов любой строки (или столбца) можно вынести за знак определителя.

5. Величина определителя не изменится, если все строки и столбцы поменять местами.

6. Величина определителя не изменится, если к одной из строк (или к одному из столбцов) прибавить другую строку (столбец), умноженную на любое число.

7. Сумма произведений элементов какой-нибудь строки (или столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна нулю.

8. Определитель произведения двух квадратных матриц равен произведению их определителей.

Введение понятия определителя матрицы позволяет определить еще одно действие с матрицами - нахождение обратной матрицы.

Для каждого ненулевого числа существует обратное число, такое, что произведение этих чисел дает единицу. Для квадратных матриц тоже существует такое понятие.

Матрица А -1 называется обратной по отношению к квадратной матрице А , если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица , т.е.

А ×А -1 = А -1 × А = Е.

Из определения следует, что только квадратная матрица имеет обратную; в этом случае и обратная матрица будет квадратной того же порядка. Однако не каждая квадратная матрица имеет свою обратную.

Определители и их свойства. Перестановкой чисел 1, 2,..., n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12...n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i>j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной) , если в ней соответственно четно (нечетно) общее число инверсий. Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n-ой степени .

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ обозначает подстановку, в которой 3 переходит в 4, 1 → 2, 2 → 1, 4 → 3. Подстановка называется четной (или нечетной ), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n-ой степени может быть записана в виде ,т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида:

, (4.4)

где индексы q 1 , q 2 ,...,q n составляют некоторую перестановку из чисел
1, 2,..., n. Число таких произведений равно числу различных перестановок из n символов, т.е. равно n!. Знак произведения (4.4) равен (- 1) q, где q - число инверсий в перестановке вторых индексов элементов.

Определителем n -го порядка, соответствующим матрице (4.3), называется алгебраическая сумма n! членов вида (4.4). Для записи определителя употребляется символ или detA = (детерминант, или определитель, матрицы А).

Свойства определителей

1. Определитель не меняется при транспонировании.

2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

3. Если в определителе переставить две строки, определитель поменяет знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых a i j = b j + c j (j = 1,...,n), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов b j , в другом - из элементов c j .

8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором M i j элемента a i j определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента a i j определителя d называется его минор M i j , взятый со знаком (-1) i + j . Алгебраическое дополнение элемента a i j будем обозначать A i j . Таким образом, A i j = (-1) i + j M i j .

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки

d = a i 1 A i 1 + a i 2 A i 2 +... + a i n A i n (i = 1,...,n)

или j- го столбца

d = a 1 j A 1 j + a 2 j A 2 j +... + a n j A n j (j =1,...,n).

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

Формула вычисления определителя третьего порядка.

Для облегчения запоминания этой формулы:

Пример 2.4. Не вычисляя определителя , показать, что он равен нулю.

Решение. Вычтем из второй строки первую, получим определитель , равный исходному. Если из третьей строки также вычесть первую, то получится определитель , в котором две строки пропорциональны. Такой определитель равен нулю.

Пример 2.5. Вычислить определитель D = , разложив его по элементам второго столбца.

Решение. Разложим определитель по элементам второго столбца:

D = a 12 A 12 + a 22 A 22 +a 32 A 32 =

.

Пример 2.6. Вычислить определитель

,

в котором все элементы по одну сторону от главной диагонали равны нулю.

Решение. Разложим определитель А по первой строке:

.

Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим:

.

Пример 2.7. Вычислить определитель .

Решение. Если к каждой строке определителя, начиная со второй, прибавить первую строку, то получится определитель, в котором все элементы, находящиеся ниже главной диагонали, будут равны нулю. А именно, получим определитель: , равный исходному.

Рассуждая, как в предыдущем примере найдем, что он равен произведению элементов главной диагонали, т.е. n!. Способ, с помощью которого вычислен данный определитель, называется способом приведения к треугольному виду.

— Отпустите синицу на верную смерть!
Пусть её приласкает свобода!
И корабль плывёт, и реактор ревёт...
— Паш, ты упоролся?

Помню, класса до 8-го мне не нравилась алгебра. Вообще не нравилась. Бесила она меня. Потому что я там ничего не понимал.

А затем всё изменилось, потому что я просёк одну фишку:

В математике вообще (и алгебре в частности) всё строится на грамотной и последовательной системе определений. Знаешь определения, понимаешь их суть — разобраться в остальном не составит труда.

Вот так и с темой сегодняшнего урока. Мы детально рассмотрим несколько смежных вопросов и определений, благодаря чему вы раз и навсегда разберётесь и с матрицами, и с определителями, и со всеми их свойствами.

Определители — центральное понятие в алгебре матриц. Подобно формулам сокращённого умножения, они будут преследовать вас на протяжении всего курса высшей математики. Поэтому читаем, смотрим и разбираемся досконально.:)

И начнём мы с самого сокровенного — а что такое матрица? И как правильно с ней работать.

Правильная расстановка индексов в матрице

Матрица — это просто таблица, заполненная числами. Нео тут ни при чём.

Одна из ключевых характеристик матрицы — это её размерность, т.е. количество строк и столбцов, из которых она состоит. Обычно говорят, что некая матрица $A$ имеет размер $\left[ m\times n \right]$, если в ней имеется $m$ строк и $n$ столбцов. Записывают это так:

Или вот так:

Бывают и другие обозначения — тут всё зависит от предпочтений лектора/ семинариста/ автора учебника. Но в любом случае со всеми этими $\left[ m\times n \right]$ и ${{a}_{ij}}$ возникает одна и та же проблема:

Какой индекс за что отвечает? Сначала идёт номер строки, затем — столбца? Или наоборот?

При чтении лекций и учебников ответ будет казаться очевидным. Но когда на экзамене перед вами — только листик с задачей, можно переволноваться и внезапно запутаться.

Поэтому давайте разберёмся с этим вопросом раз и навсегда. Для начала вспомним обычную систему координат из школьного курса математики:

Введение системы координат на плоскости

Помните её? У неё есть начало координат (точка $O=\left(0;0 \right)$) оси $x$и $y$, а каждая точка на плоскости однозначно определяется по координатам: $A=\left(1;2 \right)$, $B=\left(3;1 \right)$ и т.д.

А теперь давайте возьмём эту конструкцию и поставим её рядом с матрицей так, чтобы начало координат находилось в левом верхнем углу. Почему именно там? Да потому что открывая книгу, мы начинаем читать именно с левого верхнего угла страницы — запомнить это легче лёгкого.

Но куда направить оси? Мы направим их так, чтобы вся наша виртуальная «страница» была охвачена этими осями. Правда, для этого придётся повернуть нашу систему координат. Единственно возможный вариант такого расположения:

Наложение системы координат на матрицу

Теперь всякая клетка матрицы имеет однозначные координаты $x$ и $y$. Например запись ${{a}_{24}}$ означает, что мы обращаемся к элементу с координатами $x=2$ и $y=4$. Размеры матрицы тоже однозначно задаются парой чисел:

Определение индексов в матрице

Просто всмотритесь в эту картинку внимательно. Поиграйтесь с координатами (особенно когда будете работать с настоящими матрицами и определителями) — и очень скоро поймёте, что даже в самых сложных теоремах и определениях вы прекрасно понимаете, о чём идёт речь.

Разобрались? Что ж, переходим к первому шагу просветления — геометрическому определению определителя.:)

Геометрическое определение

Прежде всего хотел бы отметить, что определитель существует только для квадратных матриц вида $\left[ n\times n \right]$. Определитель — это число, которое cчитается по определённым правилам и является одной из характеристик этой матрицы (есть другие характеристики: ранг, собственные вектора, но об этом в других уроках).

Ну и что это за характеристика? Что он означает? Всё просто:

Определитель квадратной матрицы $A=\left[ n\times n \right]$ — это объём $n$-мерного параллелепипеда, который образуется, если рассмотреть строки матрицы в качестве векторов, образующих рёбра этого параллелепипеда.

Например, определитель матрицы размера 2x2 — это просто площадь параллелограмма, а для матрицы 3x3 это уже объём 3-мерного параллелепипеда — того самого, который так бесит всех старшеклассников на уроках стереометрии.

На первый взгляд это определение может показаться совершенно неадекватным. Но давайте не будем спешить с выводами — глянем на примеры. На самом деле всё элементарно, Ватсон:

Задача. Найдите определители матриц:

\[\left| \begin{matrix} 1 & 0 \\ 0 & 3 \\\end{matrix} \right|\quad \left| \begin{matrix} 1 & -1 \\ 2 & 2 \\\end{matrix} \right|\quad \left| \begin{matrix}2 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 4 \\\end{matrix} \right|\]

Решение. Первые два определителя имеют размер 2x2. Значит, это просто площади параллелограммов. Начертим их и посчитаем площадь.

Первый параллелограмм построен на векторах ${{v}_{1}}=\left(1;0 \right)$ и ${{v}_{2}}=\left(0;3 \right)$:

Определитель 2x2 — это площадь параллелограмма

Очевидно, это не просто параллелограмм, а вполне себе прямоугольник. Его площадь равна

Второй параллелограмм построен на векторах ${{v}_{1}}=\left(1;-1 \right)$ и ${{v}_{2}}=\left(2;2 \right)$. Ну и что с того? Это тоже прямоугольник:

Ещё один определитель 2x2

Стороны этого прямоугольника (по сути — длины векторов) легко считаются по теореме Пифагора:

\[\begin{align} & \left| {{v}_{1}} \right|=\sqrt{{{1}^{2}}+{{\left(-1 \right)}^{2}}}=\sqrt{2}; \\ & \left| {{v}_{2}} \right|=\sqrt{{{2}^{2}}+{{2}^{2}}}=\sqrt{8}=2\sqrt{2}; \\ & S=\left| {{v}_{1}} \right|\cdot \left| {{v}_{2}} \right|=\sqrt{2}\cdot 2\sqrt{2}=4. \\\end{align}\]

Осталось разобраться с последним определителем — там уже матрица 3x3. Придётся вспоминать стереометрию:


Определитель 3x3 — это объём параллелепипеда

Выглядит мозговыносяще, но по факту достаточно вспомнить формулу объёма параллелепипеда:

где $S$ — площадь основания (в нашем случае это площадь параллелограмма на плоскости $OXY$), $h$ — высота, проведённая к этому основанию (по сути, $z$-координата вектора ${{v}_{3}}$).

Площадь параллелограмма (мы начертили его отдельно) тоже считается легко:

\[\begin{align} & S=2\cdot 3=6; \\ & V=S\cdot h=6\cdot 4=24. \\\end{align}\]

Вот и всё! Записываем ответы.

Ответ: 3; 4; 24.

Небольшое замечание по поводу системы обозначений. Кому-то наверняка не понравится, что я игнорирую «стрелочки» над векторами. Якобы так можно спутать вектор с точкой или ещё с чем.

Но давайте серьёзно: мы с вами уже взрослые мальчики и девочки, поэтому из контекста прекрасно понимаем, когда речь идёт о векторе, а когда — о точке. Стрелки лишь засоряют повествование, и без того под завязку напичканное математическими формулами.

И ещё. В принципе, ничто не мешает рассмотреть и определитель матрицы 1x1 — такая матрица представляет собой просто одну клетку, а число, записанное в этой клетке, и будет определителем. Но тут есть важное замечание:

В отличие от классического объёма, определитель даст нам так называемый «ориентированный объём », т.е. объём с учётом последовательности рассмотрения векторов-строк.

И если вы хотите получить объём в классическом смысле этого слова, придётся взять модуль определителя, но сейчас не стоит париться об этом — всё равно через несколько секунд мы научимся считать любой определитель с любыми знаками, размерами и т.д.:)

Алгебраическое определение

При всей красоте и наглядности геометрического подхода у него есть серьёзный недостаток: он ничего не говорит нам о том, как этот самый определитель считать.

Поэтому сейчас мы разберём альтернативное определение — алгебраическое. Для этого нам потребуется краткая теоретическая подготовка, зато на выходе мы получим инструмент, позволяющий считать в матрицах что и как угодно.

Правда, там появится новая проблема... но обо всём по порядку.

Перестановки и инверсии

Давайте выпишем в строчку числа от 1 до $n$. Получится что-то типа этого:

Теперь (чисто по приколу) поменяем парочку чисел местами. Можно поменять соседние:

А можно — не особо соседние:

И знаете, что? А ничего! В алгебре эта хрень называется перестановкой. И у неё есть куча свойств.

Определение. Перестановка длины $n$ — строка из $n$ различных чисел, записанных в любой последовательности. Обычно рассматриваются первые $n$ натуральных чисел (т.е. как раз числа 1, 2, ..., $n$), а затем их перемешивают для получения нужной перестановки.

Обозначаются перестановки так же, как и векторы — просто буквой и последовательным перечислением своих элементов в скобках. Например: $p=\left(1;3;2 \right)$ или $p=\left(2;5;1;4;3 \right)$. Буква может быть любой, но пусть будет $p$.:)

Далее для простоты изложения будем работать с перестановками длины 5 — они уже достаточно серьёзны для наблюдения всяких подозрительных эффектов, но ещё не настолько суровы для неокрепшего мозга, как перестановки длины 6 и более. Вот примеры таких перестановок:

\[\begin{align} & {{p}_{1}}=\left(1;2;3;4;5 \right) \\ & {{p}_{2}}=\left(1;3;2;5;4 \right) \\ & {{p}_{3}}=\left(5;4;3;2;1 \right) \\\end{align}\]

Естественно, перестановку длины $n$ можно рассматривать как функцию, которая определена на множестве $\left\{ 1;2;...;n \right\}$ и биективно отображает это множество на себя же. Возвращаясь к только что записанным перестановкам ${{p}_{1}}$, ${{p}_{2}}$ и ${{p}_{3}}$, мы вполне законно можем написать:

\[{{p}_{1}}\left(1 \right)=1;{{p}_{2}}\left(3 \right)=2;{{p}_{3}}\left(2 \right)=4;\]

Количество различных перестановок длины $n$ всегда ограничено и равно $n!$ — это легко доказуемый факт из комбинаторики. Например, если мы захотим выписать все перестановки длины 5, то мы весьма заколебёмся, поскольку таких перестановок будет

Одной из ключевых характеристик всякой перестановки является количество инверсий в ней.

Определение. Инверсия в перестановке $p=\left({{a}_{1}};{{a}_{2}};...;{{a}_{n}} \right)$ — всякая пара $\left({{a}_{i}};{{a}_{j}} \right)$ такая, что $i \lt j$, но ${{a}_{i}} \gt {{a}_{j}}$. Проще говоря, инверсия — это когда большее число стоит левее меньшего (не обязательно соседнего).

Мы будем обозначать через $N\left(p \right)$ количество инверсий в перестановке $p$, но будьте готовы встретиться и с другими обозначениями в разных учебниках и у разных авторов — единых стандартов тут нет. Тема инверсий весьма обширна, и ей будет посвящён отдельный урок. Сейчас же наша задача — просто научиться считать их в реальных задачах.

Например, посчитаем количество инверсий в перестановке $p=\left(1;4;5;3;2 \right)$:

\[\left(4;3 \right);\left(4;2 \right);\left(5;3 \right);\left(5;2 \right);\left(3;2 \right).\]

Таким образом, $N\left(p \right)=5$. Как видите, ничего страшного в этом нет. Сразу скажу: дальше нас будет интересовать не столько само число $N\left(p \right)$, сколько его чётность/ нечётность. И тут мы плавно переходим к ключевому термину сегодняшнего урока.

Что такое определитель

Пусть дана квадратная матрица $A=\left[ n\times n \right]$. Тогда:

Определение. Определитель матрицы $A=\left[ n\times n \right]$ — это алгебраическая сумма $n!$ слагаемых, составленных следующим образом. Каждое слагаемое — это произведение $n$ элементов матрицы, взятых по одному из каждой строки и каждого столбца, умноженное на (−1) в степени количество инверсий:

\[\left| A \right|=\sum\limits_{n!}{{{\left(-1 \right)}^{N\left(p \right)}}\cdot {{a}_{1;p\left(1 \right)}}\cdot {{a}_{2;p\left(2 \right)}}\cdot ...\cdot {{a}_{n;p\left(n \right)}}}\]

Принципиальным моментом при выборе множителей для каждого слагаемого в определителе является тот факт, что никакие два множителя не стоят в одной строчке или в одном столбце.

Благодаря этому можно без ограничения общности считать, что индексы $i$ множителей ${{a}_{i;j}}$ «пробегают» значения 1, ..., $n$, а индексы $j$ являются некоторой перестановкой от первых:

А когда есть перестановка $p$, мы легко посчитаем инверсии $N\left(p \right)$ — и очередное слагаемое определителя готово.

Естественно, никто не запрещает поменять местами множители в каком-либо слагаемом (или во всех сразу — чего мелочиться-то?), и тогда первые индексы тоже будут представлять собой некоторую перестановку. Но в итоге ничего не поменяется: суммарное количество инверсий в индексах $i$ и $j$ сохраняет чётность при подобных извращениях, что вполне соответствует старому-доброму правилу:

От перестановки множителей произведение чисел не меняется.

Вот только не надо приплетать это правило к умножению матриц — в отличие от умножения чисел, оно не коммутативно. Но это я отвлёкся.:)

Матрица 2x2

Вообще-то можно рассмотреть и матрицу 1x1 — это будет одна клетка, и её определитель, как нетрудно догадаться, равен числу, записанному в этой клетке. Ничего интересного.

Поэтому давайте рассмотрим квадратную матрицу размером 2x2:

\[\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\ {{a}_{21}} & {{a}_{22}} \\\end{matrix} \right]\]

Поскольку количество строк в ней $n=2$, то определитель будет содержать $n!=2!=1\cdot 2=2$ слагаемых. Выпишем их:

\[\begin{align} & {{\left(-1 \right)}^{N\left(1;2 \right)}}\cdot {{a}_{11}}\cdot {{a}_{22}}={{\left(-1 \right)}^{0}}\cdot {{a}_{11}}\cdot {{a}_{22}}={{a}_{11}}{{a}_{22}}; \\ & {{\left(-1 \right)}^{N\left(2;1 \right)}}\cdot {{a}_{12}}\cdot {{a}_{21}}={{\left(-1 \right)}^{1}}\cdot {{a}_{12}}\cdot {{a}_{21}}={{a}_{12}}{{a}_{21}}. \\\end{align}\]

Очевидно, что в перестановке $\left(1;2 \right)$, состоящей из двух элементов, нет инверсий, поэтому $N\left(1;2 \right)=0$. А вот в перестановке $\left(2;1 \right)$ одна инверсия имеется (собственно, 2 < 1), поэтому $N\left(2;1 \right)=1.$

Итого универсальная формула вычисления определителя для матрицы 2x2 выглядит так:

\[\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} \\ {{a}_{21}} & {{a}_{22}} \\\end{matrix} \right|={{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}}\]

Графически это можно представить как произведение элементов, стоящих на главной диагонали, минус произведение элементов на побочной:

Определитель матрицы 2x2

Рассмотрим пару примеров:

\[\left| \begin{matrix} 5 & 6 \\ 8 & 9 \\\end{matrix} \right|;\quad \left| \begin{matrix} 7 & 12 \\ 14 & 1 \\\end{matrix} \right|.\]

Решение. Всё считается в одну строчку. Первая матрица:

И вторая:

Ответ: −3; −161.

Впрочем, это было слишком просто. Давайте рассмотрим матрицы 3x3 — там уже интересно.

Матрица 3x3

Теперь рассмотрим квадратную матрицу размера 3x3:

\[\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\end{matrix} \right]\]

При вычислении её определителя мы получим $3!=1\cdot 2\cdot 3=6$ слагаемых — ещё не слишком много для паники, но уже достаточно, чтобы начать искать какие-то закономерности. Для начала выпишем все перестановки из трёх элементов и посчитаем инверсии в каждой из них:

\[\begin{align} & {{p}_{1}}=\left(1;2;3 \right)\Rightarrow N\left({{p}_{1}} \right)=N\left(1;2;3 \right)=0; \\ & {{p}_{2}}=\left(1;3;2 \right)\Rightarrow N\left({{p}_{2}} \right)=N\left(1;3;2 \right)=1; \\ & {{p}_{3}}=\left(2;1;3 \right)\Rightarrow N\left({{p}_{3}} \right)=N\left(2;1;3 \right)=1; \\ & {{p}_{4}}=\left(2;3;1 \right)\Rightarrow N\left({{p}_{4}} \right)=N\left(2;3;1 \right)=2; \\ & {{p}_{5}}=\left(3;1;2 \right)\Rightarrow N\left({{p}_{5}} \right)=N\left(3;1;2 \right)=2; \\ & {{p}_{6}}=\left(3;2;1 \right)\Rightarrow N\left({{p}_{6}} \right)=N\left(3;2;1 \right)=3. \\\end{align}\]

Как и предполагалось, всего выписано 6 перестановок ${{p}_{1}}$, ... ${{p}_{6}}$ (естественно, можно было бы выписать их в другой последовательности — суть от этого не изменится), а количество инверсий в них меняется от 0 до 3.

В общем, у нас будет три слагаемых с «плюсом» (там, где $N\left(p \right)$ — чётное) и ещё три с «минусом». А в целом определитель будет считаться по формуле:

\[\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\end{matrix} \right|=\begin{matrix} {{a}_{11}}{{a}_{22}}{{a}_{33}}+{{a}_{12}}{{a}_{23}}{{a}_{31}}+{{a}_{13}}{{a}_{21}}{{a}_{32}}- \\ -{{a}_{13}}{{a}_{22}}{{a}_{31}}-{{a}_{12}}{{a}_{21}}{{a}_{33}}-{{a}_{11}}{{a}_{23}}{{a}_{32}} \\\end{matrix}\]

Вот только не надо сейчас садиться и яростно зубрить все эти индексы! Вместо непонятных цифр лучше запомните следующее мнемоническое правило:

Правило треугольника. Для нахождения определителя матрицы 3x3 нужно сложить три произведения элементов, стоящих на главной диагонали и в вершинах равнобедренных треугольников со стороной, параллельной этой диагонали, а затем вычесть такие же три произведения, но на побочной диагонали. Схематически это выглядит так:


Определитель матрицы 3x3: правило треугольников

Именно эти треугольники (или пентаграммы — кому как больше нравится) любят рисовать во всяких учебниках и методичках по алгебре. Впрочем, не будем о грустном. Давайте лучше посчитаем один такой определитель — для разминки перед настоящей жестью.:)

Задача. Вычислите определитель:

\[\left| \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 1 \\\end{matrix} \right|\]

Решение. Работаем по правилу треугольников. Сначала посчитаем три слагаемых, составленных из элементов на главной диагонали и параллельно ей:

\[\begin{align} & 1\cdot 5\cdot 1+2\cdot 6\cdot 7+3\cdot 4\cdot 8= \\ & =5+84+96=185 \\\end{align}\]

Теперь разбираемся с побочной диагональю:

\[\begin{align} & 3\cdot 5\cdot 7+2\cdot 4\cdot 1+1\cdot 6\cdot 8= \\ & =105+8+48=161 \\\end{align}\]

Осталось лишь вычесть из первого числа второе — и мы получим ответ:

Вот и всё!

Тем не менее, определители матриц 3x3 — это ещё не вершина мастерства. Самое интересное ждёт нас дальше.:)

Общая схема вычисления определителей

Как мы знаем, с ростом размерности матрицы $n$ количество слагаемых в определителе составляет $n!$ и быстро растёт. Всё-таки факториал — это вам не хрен собачий довольно быстро растущая функция.

Уже для матриц 4x4 считать определители напролом (т.е. через перестановки) становится как-то не оч. Про 5x5 и более вообще молчу. Поэтому к делу подключаются некоторые свойства определителя, но для их понимания нужна небольшая теоретическая подготовка.

Готовы? Поехали!

Что такое минор матрицы

Пусть дана произвольная матрица $A=\left[ m\times n \right]$. Заметьте: не обязательно квадратная. В отличие от определителей, миноры — это такие няшки, которые существуют не только в суровых квадратных матрицах. Выберем в этой матрице несколько (например, $k$) строк и столбцов, причём $1\le k\le m$ и $1\le k\le n$. Тогда:

Определение. Минор порядка $k$ — определитель квадратной матрицы, возникающей на пересечении выбранных $k$ столбцов и строк. Также минором мы будем называть и саму эту новую матрицу.

Обозначается такой минор ${{M}_{k}}$. Естественно, у одной матрицы может быть целая куча миноров порядка $k$. Вот пример минора порядка 2 для матрицы $\left[ 5\times 6 \right]$:

Выбор $k = 2$ столбцов и строк для формирования минора

Совершенно необязательно, чтобы выбранные строки и столбцы стояли рядом, как в рассмотренном примере. Главное, чтобы количество выбранных строк и столбцов было одинаковым (это и есть число $k$).

Есть и другое определение. Возможно, кому-то оно больше придётся по душе:

Определение. Пусть дана прямоугольная матрица $A=\left[ m\times n \right]$. Если после вычеркивания в ней одного или нескольких столбцов и одной или нескольких строк образуется квадратная матрица размера $\left[ k\times k \right]$, то её определитель — это и есть минор ${{M}_{k}}$. Саму матрицу мы тоже иногда будем называть минором — это будет ясно из контекста.

Как говорил мой кот, иногда лучше один раз навернуться с 11-го этажа есть корм, чем мяукать, сидя на балконе.

Пример. Пусть дана матрица

Выбирая строку 1 и столбец 2, получаем минор первого порядка:

\[{{M}_{1}}=\left| 7 \right|=7\]

Выбирая строки 2, 3 и столбцы 3, 4, получаем минор второго порядка:

\[{{M}_{2}}=\left| \begin{matrix} 5 & 3 \\ 6 & 1 \\\end{matrix} \right|=5-18=-13\]

А если выбрать все три строки, а также столбцы 1, 2, 4, будет минор третьего порядка:

\[{{M}_{3}}=\left| \begin{matrix} 1 & 7 & 0 \\ 2 & 4 & 3 \\ 3 & 0 & 1 \\\end{matrix} \right|\]

Читателю не составит труда найти и другие миноры порядков 1, 2 или 3. Поэтому идём дальше.

Алгебраические дополнения

«Ну ok, и что дают нам эти миньоны миноры?» — наверняка спросите вы. Сами по себе — ничего. Но в квадратных матрицах у каждого минора появляется «компаньон» — дополнительный минор, а также алгебраическое дополнение. И вместе эти два ушлёпка позволят нам щёлкать определители как орешки.

Определение. Пусть дана квадратная матрица $A=\left[ n\times n \right]$, в которой выбран минор ${{M}_{k}}$. Тогда дополнительный минор для минора ${{M}_{k}}$ — это кусок исходной матрицы $A$, который останется при вычёркивании всех строк и столбцов, задействованных при составлении минора ${{M}_{k}}$:

Дополнительный минор к минору ${{M}_{2}}$

Уточним один момент: дополнительный минор — это не просто «кусок матрицы», а определитель этого куска.

Обозначаются дополнительные миноры с помощью «звёздочки»: $M_{k}^{*}$:

где операция $A\nabla {{M}_{k}}$ буквально означает «вычеркнуть из $A$ строки и столбцы, входящие в ${{M}_{k}}$». Эта операция не является общепринятой в математике — я её сам только что придумал для красоты повествования.:)

Дополнительные миноры редко используются сами по себе. Они являются частью более сложной конструкции — алгебраического дополнения.

Определение. Алгебраическое дополнение минора ${{M}_{k}}$ — это дополнительный минор $M_{k}^{*}$, умноженный на величину ${{\left(-1 \right)}^{S}}$, где $S$ — сумма номеров всех строк и столбцов, задействованных в исходном миноре ${{M}_{k}}$.

Как правило, алгебраическое дополнение минора ${{M}_{k}}$ обозначается через ${{A}_{k}}$. Поэтому:

\[{{A}_{k}}={{\left(-1 \right)}^{S}}\cdot M_{k}^{*}\]

Сложно? На первый взгляд — да. Но это не точно. Потому что на самом деле всё легко. Рассмотрим пример:

Пример. Дана матрица 4x4:

Выберем минор второго порядка

\[{{M}_{2}}=\left| \begin{matrix} 3 & 4 \\ 15 & 16 \\\end{matrix} \right|\]

Капитан Очевидность как бы намекает нам, что при составлении этого минора были задействованы строки 1 и 4, а также столбцы 3 и 4. Вычёркиваем их — получим дополнительный минор:

Осталось найти число $S$ и получить алгебраическое дополнение. Поскольку мы знаем номера задействованных строк (1 и 4) и столбцов (3 и 4), всё просто:

\[\begin{align} & S=1+4+3+4=12; \\ & {{A}_{2}}={{\left(-1 \right)}^{S}}\cdot M_{2}^{*}={{\left(-1 \right)}^{12}}\cdot \left(-4 \right)=-4\end{align}\]

Ответ: ${{A}_{2}}=-4$

Вот и всё! По сути, всё различие между дополнительным минором и алгебраическим дополнением — только в минусе спереди, да и то не всегда.

Теорема Лапласа

И вот мы пришли к тому, зачем, собственно, все эти миноры и алгебраические дополнения были нужны.

Теорема Лапласа о разложении определителя. Пусть в матрице размера $\left[ n\times n \right]$ выбрано $k$ строк (столбцов), причём $1\le k\le n-1$. Тогда определитель этой матрицы равен сумме всех произведений миноров порядка $k$, содержащихся в выбранных строках (столбцах), на их алгебраические дополнения:

\[\left| A \right|=\sum{{{M}_{k}}\cdot {{A}_{k}}}\]

Причём таких слагаемых будет ровно $C_{n}^{k}$.

Ладно, ладно: про $C_{n}^{k}$ — это я уже понтуюсь, в оригинальной теореме Лапласа ничего такого не было. Но комбинаторику никто не отменял, и буквально беглый взгляд на условие позволит вам самостоятельно убедиться, что слагаемых будет именно столько.:)

Мы не будем её доказывать, хоть это и не представляет особой трудности — все выкладки сводятся к старым-добрым перестановкам и чётности/ нечётности инверсий. Тем не менее, доказательство будет представлено в отдельном параграфе, а сегодня у нас сугубо практический урок.

Поэтому переходим к частному случаю этой теоремы, когда миноры представляют собой отдельные клетки матрицы.

Разложение определителя по строке и столбцу

То, о чём сейчас пойдёт речь — как раз и есть основной инструмент работы с определителями, ради которого затевались вся эта дичь с перестановками, минорами и алгебраическими дополнениями.

Читайте и наслаждайтесь:

Следствие из Теоремы Лапласа (разложение определителя по строке/столбцу). Пусть в матрице размера $\left[ n\times n \right]$ выбрана одна строка. Минорами в этой строке будут $n$ отдельных клеток:

\[{{M}_{1}}={{a}_{ij}},\quad j=1,...,n\]

Дополнительные миноры тоже легко считаются: просто берём исходную матрицу и вычёркиваем строку и столбец, содержащие ${{a}_{ij}}$. Назовём такие миноры $M_{ij}^{*}$.

Для алгебраического дополнения ещё нужно число $S$, но в случае с минором порядка 1 это просто сумма «координат» клетки ${{a}_{ij}}$:

И тогда исходный определитель можно расписать через ${{a}_{ij}}$ и $M_{ij}^{*}$ согласно теореме Лапласа:

\[\left| A \right|=\sum\limits_{j=1}^{n}{{{a}_{ij}}\cdot {{\left(-1 \right)}^{i+j}}\cdot {{M}_{ij}}}\]

Это и есть формула разложения определителя по строке . Но то же верно и для столбцов.

Из этого следствия можно сразу сформулировать несколько выводов:

  1. Эта схема одинаково хорошо работает как для строк, так и для столбцов. На самом деле чаще всего разложение будет идти именно по столбцам, нежели по строкам.
  2. Количество слагаемых в разложении всегда ровно $n$. Это существенно меньше $C_{n}^{k}$ и уж тем более $n!$.
  3. Вместо одного определителя $\left[ n\times n \right]$ придётся считать несколько определителей размера на единицу меньше: $\left[ \left(n-1 \right)\times \left(n-1 \right) \right]$.

Последний факт особенно важен. Например, вместо зверского определителя 4x4 теперь достаточно будет посчитать несколько определителей 3x3 — с ними мы уж как-нибудь справимся.:)

Задача. Найдите определитель:

\[\left| \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\\end{matrix} \right|\]

Решение. Разложим этот определитель по первой строке:

\[\begin{align} \left| A \right|=1\cdot {{\left(-1 \right)}^{1+1}}\cdot \left| \begin{matrix} 5 & 6 \\ 8 & 9 \\\end{matrix} \right|+ & \\ 2\cdot {{\left(-1 \right)}^{1+2}}\cdot \left| \begin{matrix} 4 & 6 \\ 7 & 9 \\\end{matrix} \right|+ & \\ 3\cdot {{\left(-1 \right)}^{1+3}}\cdot \left| \begin{matrix} 4 & 5 \\ 7 & 8 \\\end{matrix} \right|= & \\\end{align}\]

\[\begin{align} & =1\cdot \left(45-48 \right)-2\cdot \left(36-42 \right)+3\cdot \left(32-35 \right)= \\ & =1\cdot \left(-3 \right)-2\cdot \left(-6 \right)+3\cdot \left(-3 \right)=0. \\\end{align}\]

Задача. Найдите определитель:

\[\left| \begin{matrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\\end{matrix} \right|\]

Решение. Для разнообразия давайте в этот раз работать со столбцами. Например, в последнем столбце присутствуют сразу два нуля — очевидно, это значительно сократит вычисления. Сейчас увидите почему.

Итак, раскладываем определитель по четвёртому столбцу:

\[\begin{align} \left| \begin{matrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\\end{matrix} \right|=0\cdot {{\left(-1 \right)}^{1+4}}\cdot \left| \begin{matrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\\end{matrix} \right|+ & \\ +1\cdot {{\left(-1 \right)}^{2+4}}\cdot \left| \begin{matrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\\end{matrix} \right|+ & \\ +1\cdot {{\left(-1 \right)}^{3+4}}\cdot \left| \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\\end{matrix} \right|+ & \\ +0\cdot {{\left(-1 \right)}^{4+4}}\cdot \left| \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right| & \\\end{align}\]

И тут — о, чудо! — два слагаемых сразу улетают коту под хвост, поскольку в них есть множитель «0». Остаётся ещё два определителя 3x3, с которыми мы легко разберёмся:

\[\begin{align} & \left| \begin{matrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\\end{matrix} \right|=0+0+1-1-1-0=-1; \\ & \left| \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\\end{matrix} \right|=0+1+1-0-0-1=1. \\\end{align}\]

Возвращаемся к исходнику и находим ответ:

\[\left| \begin{matrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\\end{matrix} \right|=1\cdot \left(-1 \right)+\left(-1 \right)\cdot 1=-2\]

Ну вот и всё. И никаких 4! = 24 слагаемых считать не пришлось.:)

Ответ: −2

Основные свойства определителя

В последней задаче мы видели, как наличие нулей в строках (столбцах) матрицы резко упрощает разложение определителя и вообще все вычисления. Возникает естественный вопрос: а нельзя ли сделать так, чтобы эти нули появились даже в той матрице, где их изначально не было?

Ответ однозначен: можно . И здесь нам на помощь приходят свойства определителя:

  1. Если поменять две строчки (столбца) местами, определитель не изменится;
  2. Если одну строку (столбец) умножить на число $k$, то весь определитель тоже умножится на число $k$;
  3. Если взять одну строку и прибавить (вычесть) её сколько угодно раз из другой, определитель не изменится;
  4. Если две строки определителя одинаковы, либо пропорциональны, либо одна из строк заполнена нулями, то весь определитель равен нулю;
  5. Все указанные выше свойства верны и для столбцов.
  6. При транспонировании матрицы определитель не меняется;
  7. Определитель произведения матриц равен произведению определителей.

Особую ценность представляет третье свойство: мы можем вычитать из одной строки (столбца) другую до тех пор, пока в нужных местах не появятся нули .

Чаще всего расчёты сводится к тому, чтобы «обнулить» весь столбец везде, кроме одного элемента, а затем разложить определитель по этому столбцу, получив матрицу размером на 1 меньше.

Давайте посмотрим, как это работает на практике:

Задача. Найдите определитель:

\[\left| \begin{matrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \\\end{matrix} \right|\]

Решение. Нулей тут как бы вообще не наблюдается, поэтому можно «долбить» по любой строке или столбцу — объём вычислений будет примерно одинаковым. Давайте не будем мелочиться и «обнулим» первый столбец: в нём уже есть клетка с единицей, поэтому просто возьмём первую строчку и вычтем её 4 раза из второй, 3 раза из третьей и 2 раза из последней.

В результате мы получим новую матрицу, но её определитель будет тем же:

\[\begin{matrix} \left| \begin{matrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \\\end{matrix} \right|\begin{matrix} \downarrow \\ -4 \\ -3 \\ -2 \\\end{matrix}= \\ =\left| \begin{matrix} 1 & 2 & 3 & 4 \\ 4-4\cdot 1 & 1-4\cdot 2 & 2-4\cdot 3 & 3-4\cdot 4 \\ 3-3\cdot 1 & 4-3\cdot 2 & 1-3\cdot 3 & 2-3\cdot 4 \\ 2-2\cdot 1 & 3-2\cdot 2 & 4-2\cdot 3 & 1-2\cdot 4 \\\end{matrix} \right|= \\ =\left| \begin{matrix} 1 & 2 & 3 & 4 \\ 0 & -7 & -10 & -13 \\ 0 & -2 & -8 & -10 \\ 0 & -1 & -2 & -7 \\\end{matrix} \right| \\\end{matrix}\]

Теперь с невозмутимостью Пятачка раскладываем этот определитель по первому столбцу:

\[\begin{matrix} 1\cdot {{\left(-1 \right)}^{1+1}}\cdot \left| \begin{matrix} -7 & -10 & -13 \\ -2 & -8 & -10 \\ -1 & -2 & -7 \\\end{matrix} \right|+0\cdot {{\left(-1 \right)}^{2+1}}\cdot \left| ... \right|+ \\ +0\cdot {{\left(-1 \right)}^{3+1}}\cdot \left| ... \right|+0\cdot {{\left(-1 \right)}^{4+1}}\cdot \left| ... \right| \\\end{matrix}\]

Понятно, что «выживет» только первое слагаемое — в остальных я даже определители не выписывал, поскольку они всё равно умножаются на ноль. Коэффициент перед определителем равен единице, т.е. его можно не записывать.

Зато можно вынести «минусы» из всех трёх строк определителя. По сути, мы трижды вынесли множитель (−1):

\[\left| \begin{matrix} -7 & -10 & -13 \\ -2 & -8 & -10 \\ -1 & -2 & -7 \\\end{matrix} \right|=\cdot \left| \begin{matrix} 7 & 10 & 13 \\ 2 & 8 & 10 \\ 1 & 2 & 7 \\\end{matrix} \right|\]

Получили мелкий определитель 3x3, который уже можно посчитать по правилу треугольников. Но мы попробуем разложить и его по первому столбцу — благо в последней строчке гордо стоит единица:

\[\begin{align} & \left(-1 \right)\cdot \left| \begin{matrix} 7 & 10 & 13 \\ 2 & 8 & 10 \\ 1 & 2 & 7 \\\end{matrix} \right|\begin{matrix} -7 \\ -2 \\ \uparrow \\\end{matrix}=\left(-1 \right)\cdot \left| \begin{matrix} 0 & -4 & -36 \\ 0 & 4 & -4 \\ 1 & 2 & 7 \\\end{matrix} \right|= \\ & =\cdot \left| \begin{matrix} -4 & -36 \\ 4 & -4 \\\end{matrix} \right|=\left(-1 \right)\cdot \left| \begin{matrix} -4 & -36 \\ 4 & -4 \\\end{matrix} \right| \\\end{align}\]

Можно, конечно, ещё поприкалываться и разложить матрицу 2x2 по строке (столбцу), но мы же с вами адекватны, поэтому просто посчитаем ответ:

\[\left(-1 \right)\cdot \left| \begin{matrix} -4 & -36 \\ 4 & -4 \\\end{matrix} \right|=\left(-1 \right)\cdot \left(16+144 \right)=-160\]

Вот так и разбиваются мечты. Всего-то −160 в ответе.:)

Ответ: −160.

Парочка замечаний перед тем, как мы перейдём к последней задаче:

  1. Исходная матрица была симметрична относительно побочной диагонали. Все миноры в разложении тоже симметричны относительно той же побочной диагонали.
  2. Строго говоря, мы могли вообще ничего не раскладывать, а просто привести матрицу к верхнетреугольному виду, когда под главной диагональю стоят сплошные нули. Тогда (в точном соответствии с геометрической интерпретацией, кстати) определитель равен произведению ${{a}_{ii}}$ — чисел на главной диагонали.

Задача. Найдите определитель:

\[\left| \begin{matrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 8 & 16 \\ 3 & 9 & 27 & 81 \\ 5 & 25 & 125 & 625 \\\end{matrix} \right|\]

Решение. Ну, тут первая строка прямо-таки напрашивается на «обнуление». Берём первый столбец и вычитаем ровно один раз из всех остальных:

\[\begin{align} & \left| \begin{matrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 8 & 16 \\ 3 & 9 & 27 & 81 \\ 5 & 25 & 125 & 625 \\\end{matrix} \right|= \\ & =\left| \begin{matrix} 1 & 1-1 & 1-1 & 1-1 \\ 2 & 4-2 & 8-2 & 16-2 \\ 3 & 9-3 & 27-3 & 81-3 \\ 5 & 25-5 & 125-5 & 625-5 \\\end{matrix} \right|= \\ & =\left| \begin{matrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 6 & 14 \\ 3 & 6 & 24 & 78 \\ 5 & 20 & 120 & 620 \\\end{matrix} \right| \\\end{align}\]

Раскладываем по первой строке, а затем выносим общие множители из оставшихся строк:

\[\cdot \left| \begin{matrix} 2 & 6 & 14 \\ 6 & 24 & 78 \\ 20 & 120 & 620 \\\end{matrix} \right|=\cdot \left| \begin{matrix} 1 & 3 & 7 \\ 1 & 4 & 13 \\ 1 & 6 & 31 \\\end{matrix} \right|\]

Снова наблюдаем «красивые» числа, но уже в первом столбце — раскладываем определитель по нему:

\[\begin{align} & 240\cdot \left| \begin{matrix} 1 & 3 & 7 \\ 1 & 4 & 13 \\ 1 & 6 & 31 \\\end{matrix} \right|\begin{matrix} \downarrow \\ -1 \\ -1 \\\end{matrix}=240\cdot \left| \begin{matrix} 1 & 3 & 7 \\ 0 & 1 & 6 \\ 0 & 3 & 24 \\\end{matrix} \right|= \\ & =240\cdot {{\left(-1 \right)}^{1+1}}\cdot \left| \begin{matrix} 1 & 6 \\ 3 & 24 \\\end{matrix} \right|= \\ & =240\cdot 1\cdot \left(24-18 \right)=1440 \\\end{align}\]

Порядок. Задача решена.

Ответ: 1440

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!