Настройка оборудования и программного обеспечения

Схемотехника выходных каскадов усилителей мощности. Схемотехника умзч со стабилизацией режима Схемотехника современных усилителей

Схема № 1

Выбор класса усилителя . Сразу предупредим радиолюбителя - делать усилитель класса A на транзисторах мы не будем. Причина проста - как было сказано во введении, транзистор усиливает не только полезный сигнал, но и поданное на него смещение. Проще говоря, усиливает постоянный ток. Ток этот вместе с полезным сигналом потечет по акустической системе (АС), а динамики, к сожалению, умеют этот постоянный ток воспроизводить. Делают они это самым очевидным образом - вытолкнув или втянув диффузор из нормального положения в противоестественное.

Попробуйте прижать пальцем диффузор динамика - и вы убедитесь, в какой кошмар превратится при этом издаваемый звук. Постоянный ток по своему действию с успехом заменяет ваши пальцы, поэтому динамической головке он абсолютно противопоказан. Отделить же постоянный ток от переменного сигнала можно только двумя средствами - трансформатором или конденсатором, - и оба варианта, что называется, один хуже другого.

Принципиальная схема

Схема первого усилителя, который мы соберем, приведена на рис. 11.18.

Это усилитель с обратной связью, выходной каскад которого работает в режиме В. Единственное достоинство этой схемы - простота, а также однотипность выходных транзисторов (не требуется специальные комплементарные пары). Тем не менее, она достаточно широко применяется в усилителях небольшой мощности. Еще один плюс схемы - она не требует никакой настройки, и при исправных деталях заработает сразу, а нам это сейчас очень важно.

Рассмотрим работу этой схемы. Усиливаемый сигнал подается на базу транзистора VT1. Усиленный этим транзистором сигнал с резистора R4 подается на базу составного транзистора VT2, VT4, а с него - на резистор R5.

Транзистор VT3 включен в режиме эмиттерного повторителя. Он усиливает положительные полуволны сигнала на резисторе R5 и подает их через конденсатор C4 на АС.

Отрицательные же полуволны усиливает составной транзистор VT2, VT4. При этом падение напряжения на диоде VD1 закрывает транзистор VT3. Сигнал с выхода усилителя подается на делитель цепи обратной связи R3, R6, а с него - на эмиттер входного транзистора VT1. Таким образом, транзистор VT1 у нас и играет роль устройства сравнения в цепи обратной связи.

Постоянный ток он усиливает с коэффициентом усиления, равным единице (потому что сопротивление конденсатора C постоянному току теоретически бесконечно), а полезный сигнал - с коэффициентом, равным соотношению R6/R3.

Как видим, величина емкостного сопротивления конденсатора в этой формуле не учитывается. Частота, начиная с которой конденсатором при расчетах можно пренебречь, называется частотой среза RC-цепочки. Частоту эту можно рассчитать по формуле

F = 1 / (R×C) .

Для нашего примера она будет около 18 Гц, т. е. более низкие частоты усилитель будет усиливать хуже, чем он мог бы.

Плата . Усилитель собран на плате из одностороннего стеклотекстолита толщиной 1.5 мм размерами 45×32.5 мм. Разводку печатной платы в зеркальном изображении и схему расположения деталей можно скачать . Видеоролик о работе усилителя в формате MOV скачать для просмотра можно . Хочу сразу предупредить радиолюбителя - звук, воспроизводимый усилителем, записывался в ролике с помощью встроенного в фотоаппарат микрофона, так что говорить о качестве звука, к сожалению, будет не совсем уместно! Внешний вид усилителя приведен на рис. 11.19.

Элементная база . При изготовлении усилителя транзисторы VT3, VT4 можно заменить любыми, рассчитанными на напряжение не менее напряжения питания усилителя, и допустимым током не менее 2 А. На такой же ток должен быть рассчитан и диод VD1.

Остальные транзисторы - любые с допустимым напряжением не менее напряжение питания, и допустимым током не менее 100 мА. Резисторы - любые с допустимой рассеиваемой мощностью не менее 0.125 Вт, конденсаторы - электролитические, с емкостью, не менее указанной на схеме, и рабочим напряжением на менее напряжения питания усилителя.

Радиаторы для усилителя . Прежде чем попробовать изготовить нашу вторую конструкцию, давайте, уважаемый радиолюбитель, остановимся на радиаторах для усилителя и приведем здесь весьма упрощенную методику их расчета.

Во-первых, вычисляем максимальную мощность усилителя по формуле:

P = (U × U) / (8 × R), Вт ,

где U - напряжение питания усилителя, В; R - сопротивление АС (обычно оно составляет 4 или 8 Ом, хотя бывают и исключения).

Во-вторых, вычисляем мощность, рассеиваемую на коллекторах транзисторов, по формуле:

P рас = 0,25 × P, Вт .

В-третьих, вычисляем площадь радиатора, необходимую для отвода соответствующего количества тепла:

S = 20 × P рас, см 2

В-четвертых, выбираем или изготавливаем радиатор, площадь поверхности которого будет не менее рассчитанной.

Указанный расчет носит весьма приблизительный характер, но для радиолюбительской практики его обычно бывает достаточно. Для нашего усилителя при напряжении питания 12 В и сопротивлении АС, равным 8 Ом, «правильным» радиатором была бы алюминиевая пластина размерами 2×3 см и толщиной не менее 5 мм для каждого транзистора. Имейте ввиду, что более тонкая пластина плохо передает тепло от транзистора к краям пластины. Хочется сразу предупредить - радиаторы во всех остальных усилителях тоже должны быть «нормальных» размеров. Каких именно - посчитайте сами!

Качество звучания . Собрав схему, вы обнаружите, что звук усилителя не совсем чистый.

Причина этого - «чистый» режим класса В в выходном каскаде, характерные искажения которого даже обратная связь полностью скомпенсировать не способна. Ради эксперимента попробуйте заменить в схеме транзистор VT1 на КТ3102ЕМ, а транзистор VT2 - на КТ3107Л. Эти транзисторы имеют значительно больший коэффициент усиления, чем КТ315Б и КТ361Б. И вы обнаружите, что звучание усилителя значительно улучшилось, хотя все равно останутся заметными некоторые искажения.

Причина этого также очевидна - больший коэффициент усиления усилителя в целом обеспечивает большую точность работы обратной связи, и больший ее компенсирующий эффект.

Продолжение читайте

Выходные каскады на базе " двоек "

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением (от 100 Ом до 10,1 кОм) с шагом 2 кОм (рис. 3). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм) мы в какой - то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС, а в другом (100 Ом) - к схеме с замкнутой ООС.

Основные типы составных биполярных транзисторов (БТ) показаны на рис. 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона (рис. 4 а) на базе двух транзисторов одной проводимости (" двойка " Дарлингтона), реже - составной транзистор Шиклаи (рис. 4б) из двух транзисторов разной проводимости с токовой отрицательной ОС, и еще реже - составной транзистор Брайстона (Bryston , рис. 4 в).
" Алмазный " транзистор - разновидность составного транзистора Шиклаи - показан на рис. 4 г. В отличие от транзистора Шиклаи, в этом транзисторе благодаря " токовому зеркалу " ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков. Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 (рис. 4 д). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах (ПТ).

1.1. Выходные каскады на базе " двоек ". " Двойка " - это двухтактный выходной каскад с транзисторами, включенными по схеме Дарлингтона, Шиклаи или их комбинации (квазикомлементарный каскад, Bryston и др.). Типовой двухтактный выходной каскад на " двойке " Дарлингтона показан на рис. 5. Если эмиттерные резисторы R3, R4 (рис. 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания, то эти транзисторы будут работать без отсечки тока, т. е. в режиме класса А.

Посмотрим, что даст спаривание выходных транзисторов для двойки " Дарлингт она (рис. 13).

На рис. 15 приведена схема ВК, использованная в одном из професс и ональных усилителей.


Менее популярна в ВК схема Шиклаи (рис. 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады, когда верхнее плечо выполнялось по схеме Дарлингтона, а нижнее - по схеме Шиклаи. Однако в первоначальной версии входное сопротивление плеч ВК несимметрично, что приводит к дополнительным искажениям. Модифицированный вариант такого ВК с диодом Баксандалла, в качестве которого использован базо - эмиттерный переход транзистора VT 3, показан на рис. 20.

Кроме рассмотренных " двоек ", есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости, а коллекторным током - транзисторами другой проводимости (рис. 22). Аналогичный каскад может быть реализован и на полевых транзисторах, например, Lateral MOSFET (рис. 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах (рис. 30).

В качестве эффективного способа повышения и стабилизации входного сопротивления " двойки " предлагается использовать на ее входе буфер, например, эмиттерный повторитель с генератором тока в цепи эмиттера (рис. 32).


Из рассмотренных " двоек " наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи. Посмотрим, что может дать для такого каскада применение буфера. Если вместо одного буфера использовать два на транзисторах разной проводимости, включенных параллельно (рис. 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления. Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами. Посмотрим, что даст установка параллельного буфера на ее входе (рис. 37).

Параметры исследованных вы ходных каскадов сведены в табл. 1 .


Анализ таблицы позволяет сделать следующие выводы:
- любой ВК из " двоек " на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности;
- характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала;
- буферный каскад на входе любой из " двоек " на БТ повышает входное сопротивление, снижает индуктивную составляющую выхода, расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала;
- ВК Шиклаи с ПТ на выходе и параллельным буфером на входе (рис. 37) имеет самые высокие характеристики (минимальные искажения, максимальную полосу пропускания, нулевую девиацию фазы в звуковом диапазоне).

Выходные каскады на базе " троек "

В высококачественных УМЗЧ чаще используются трехкаскадные структуры: " тройки " Дарлингтона, Шиклаи с выходными транзисторами Дарлинг тона, Шиклаи с выходными транзис торами Bryston и другие комбинации. Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов (рис. 39). На рис. 41 показан ВК с разветвлением каскадов: входные повторители одновременно работают на два каскада, которые, в свою очередь, также работают на два каскада каждый, а третья ступень включена на общий выход. В результате, на выходе такого ВК работают счетверенные транзисторы.


Схема ВК, в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона, изображена на рис. 43. Параметры ВК на рис.43 можно существенно улучшить, если включить на его входе хорошо зарекомендовавший себя с " двойками " параллельный буферный каскад (рис. 44).

Вариант ВК Шиклаи по схеме на рис. 4 г с применением составных транзисторов Bryston показан на рис. 46 . На рис. 48 показан вариан т ВК на транзисторах Шиклаи (рис.4 д) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А (цепи термоста билизации не показаны).

На рис. 51 показан ВК по структуре предыдущей схемы только с единичным коэффициентом передачи. Обзор будет неполным, если не остановиться на схеме выходного каскада с коррекцией нелинейности Хауксфорда (Hawksford), приведенной на рис. 53 . Транзисторы VT 5 и VT 6 - составные транзисторы Дарлингтона.

Заменим выходные транзисторы на полевые транзисторы типа Lateral (рис. 57


По вышению надежности усилите лей за счет исключения сквозных то ков, которые особенно опасны при кли пировании высокочастотных сиг налов, способствуют схемы антинасыщения выходных транзисторов. Варианты таких решений показаны на рис. 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия. На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5...1,5 В, что примерно совпадает с падением напряжения на базо-эмиттерном переходе. В первом варианте (рис. 58 а) за счет дополнительного диода в цепи базы напряжение эмитте р - коллектор не доходит до напряжения насыщения пример но на 0,6 В (падение напряжения на диоде). Вторая схема (рис. 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах. Аналогичные решения применяются и в силовых ключах.

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное, на 10...15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада. В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды. Рассмотрим этот вариант на примере модификации схемы на рис. 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 (рис. 59), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов. При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Схемы смещения

Ранее, с целью упрощения, вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения. Многие из рассмотренных схем, в частности, выходные каскады с параллельным повторителем на входе, не нуждаются в схемах смещения, что является их дополнительным достоинством. Теперь рассмотрим типовые схе мы смещения, которые представлены на рис. 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем: диф ференциальный каскад (ДК), отражатель тока (" токовое зеркало "), схема сдвига уровня, каскод (с последова тельным и параллельным питанием, последний также называют " лома ным каскодом "), генератор стабильного тока (ГСТ) и др. Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ. Оценку параметров основных схем ГСТ (рис. 62 - 6 6) сделаем с помощью моделирования. Будем исходить из того, что ГСТ является нагрузкой УН и включенпараллельно ВК. Исследуем его свойства с помощью методики, аналогичной исследованиям ВК.

Отражатели тока

Рассмотренные схемы ГСТ - , это вариант динамической нагрузки для однотактного УН. В УМЗЧ с одним дифференциальным каскадом (ДК) для организации встречной динамической нагрузки в УН используют структуру " токового зеркала " или, как его еще называют, " отражателя тока " (ОТ). Эта структура УМЗЧ была характерна для усилителей Холтона, Хафлера и др. Основные схемы отражателей тока приведены на рис. 67 . Они могут быть как с единичным коэффициентом передачи (точнее, близким к 1), так и с большим или меньшим единицы (масштабные отражатели тока). В усилителе напряжения ток ОТ находится в пределах 3...20 мА: Поэтому испытаем все ОТ при токе, например, около 10 мА по схеме рис. 68.

Результаты испытаний приве дены в табл. 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 - 7; № 2, с. 5 - 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности, пригодного как для озвучивания " пространства " во время прадничных мероприятий, так и для дискотек. Конечно, хотелось, чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался. Еще одно требование к нему - легкодоступность комплектующих. Стремясь достичь качества Hi - Fi , я выбрал комплементарно - симметричную схему выходного каскада. Максимальная выходная мощность усилителя была задана на уровне 300 Вт (на нагрузке 4 Ом). При таком мощности выходное напряжение составляет примерно 35 В. Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2x60 В. Схема усилителя приведена на рис. 1 . УМЗЧ имеет асимметричный вход. Входной каскад образуют два дифференциальных усилителя.

А. ПЕТРОВ, Радиомир, 201 1 , №№ 4 - 12

Усилители мощности (УМ) предназначены для передачи больших мощностей сигнала без искажений в низкоомную нагрузку. Обычно они являются выходными каскадами многокаскадных усилителей. Основной задачей УМ является выделение в нагрузке возможно большей мощности сигнала, усиление напряжения в нем является второстепенным фактором.

Основными задачами при проектировании УМ являются:

◆ обеспечение режима согласования выходного сопротивления УМ с нагрузкой с целью передачи в нагрузку максимальной мощности;

◆ достижение минимальных нелинейных искажений сигнала;

◆ получение максимального КПД.

УМ классифицируются по:

◆ способу усиления - на однотактные и двухтактные;

◆ способу согласования - на трансформаторные и бестрансформаторные;

◆ классу усиления - на классы A, B, AB, C, D.

В качестве методов проектирования могут применяться:

◆ графоаналитические (построение ДХ и т.д.);

◆ по усредненным параметрам.

4.2. Классы усиления

Для всех рассмотренных ранее усилительных каскадов предполагалось. Что они работают в режиме класса А. Выбор рабочей точки покоя, например для БТ, (см. рисунок 2.10) производится таким образом, чтобы входной сигнал полностью помещался на линейном участке входной ВАХ транзистора, а значение I б 0 располагалось на середине этого линейного участка. На выходной ВАХ транзистора в режиме класса А рабочая точка (I к 0, U к 0) располагается на середине нагрузочной прямой так, чтобы амплитудные значения сигналов не выходили за те пределы нагрузочной прямой, где изменения тока коллектора прямо пропорциональны изменениям тока базы. Поскольку режим А характерен работой транзисторов на почти линейных участках своих ВАХ, то УМ в этом режиме будет иметь минимальные НИ (обычно K Г ≤1%).

При работе в режиме класса А транзистор все время находится в открытом состоянии, следовательно, угол отсечки (половина времени за период, в течение которого транзистор открыт) φ ост =180°. Потребление мощности источника питания происходит в любой момент, поэтому каскады, работающие в режиме класса А, характеризуются невысоким КПД (в идеале - 50%, реально - (35…45)%). Режим усиления класса А в УМ применяется в тех случаях, когда необходимы минимальные НИ, а мощность и КПД не имеют решающего значения.

Более мощные варианты выходных каскадов работают в режиме класса В, характеризующегося φ ост =90° (рисунок 4.1).

Рисунок 4.1. Режим класс B


В режиме покоя транзистор закрыт и не потребляет мощности от источника питания, а открывается только в течение половины периода входного сигнала. Относительно небольшая потребляемая мощность позволяет получить в УМ класса B значение КПД до 70%. Режим класса В обычно применяется в двухтактных УМ. Основной недостаток УМ класса B - большой уровень НИ (K Г ≤10%).

Режим класса АВ занимает промежуточное значение между режимами класса А и В и применяется в двухтактных УМ. В режиме покоя через транзистор протекает небольшой ток покоя I к 0 (рисунок 4.2), выводящий основную часть рабочей полуволны входного гармонического сигнала на участок ВАХ с относительно малой нелинейностью.

Рисунок 4.2. Режим класс AB


Угол отсечки в режиме класса АВ достигает (120…130)°, КПД и НИ - средние между значениями для режимов классов А и В.

В режиме класса C транзистор заперт смещением U см (рисунок 4.3), φ ост =90°, поэтому УМ класса С более экономичны, чем УМ класса В.

Рисунок 4.3. Режим класс C


Однако в режиме класса С велики НИ, поэтому класс С применяется, в основном, в генераторах и резонансных усилителях, где высшие гармонические составляющие отфильтровываются резонансным контуром в цепи нагрузки.

В мощных усилителях - преобразователях находит применение режим класса D или ключевой режим работы усилительных элементов. Данный режим, в сочетании с широтно-импульсной модуляцией, позволяет мощные экономичные УМ, в т.ч. и для систем звуковой трансляции.

Таким образом, активный элемент в УМ может работать как без отсечки тока (класс А), так и с отсечкой (классы АВ, В, С, D). Класс усиления задается положением рабочей точки в режиме покоя.

4.3. Однотактные УМ

В качестве однотактных бестрансформаторных УМ могут быть применены уже рассмотренные каскады с ОЭ (ОИ) и ОК (ОС), выполненные на мощных БТ или ПТ, причем эмиттерный (истоковый) повторитель эффективен при низкоомной (порядка единиц Ом) нагрузке. Основной недостаток таких каскадов - в режиме согласования с нагрузкой КПД≤25%.

Однотактные трансформаторные УМ имеют КПД≤50% за счет оптимального согласования с нагрузкой с помощью трансформатора (рисунок 4.4).

Рисунок 4.4. Однотактный трансформаторный УМ


Сопротивление нагрузки по переменному току равно:

R н ≈ ≈ R н ·n ²,

где n - коэффициент трансформации, n =U 1 /U 2 .

Данный каскад находит ограниченное применение в современной схемотехнике УМ из-за ряда существенных недостатков:

◆ малого КПД;

◆ больших частотных искажений за счет трансформатора;

◆ больших НИ за счет тока подмагничивания трансформатора;

◆ невозможности реализации в виде ИМС.

Трансформаторные УМ подробно описаны в классических учебниках по УУ, например, в.

4.4. Двухтактные УМ

Двухтактные УМ ввиду возможности использования режимов АВ, В, С и D характеризуются лучшими энергетическими показателями. На рисунке 4.5 приведена схема двухтактного УМ с трансформаторной связью .


Рисунок 4.5. Двухтактный трансформаторный УМ


При работе данного УМ в режиме класса В, цепь резистора R б2 отсутствует. Трансформатор Tp 1 осуществляет согласование входа УМ с источником сигнала, трансформатор Tp 2 согласует выходное сопротивление УМ с сопротивлением нагрузки. Трансформатор Tp 1 выполняет еще и функции фазоинвертора (см. на рисунке 4.5 фазировку его обмоток).

Усиление сигнала в рассматриваемом УМ происходит в два такта работы устройства. Первый такт сопровождается усилением положительной полуволны гармонического сигнала с помощью транзистора VT 2 , второй - усилением отрицательной полуволны гармонического сигнала с помощью VT 1 .

Графический и энергетический расчет двухтактного трансформаторного УМ двухтактного достаточно полно представлены в классических учебниках по усилительным устройствам, например, . Энергетический расчет показывает, что КПД такого УМ реально достигает порядка 70%, что примерно в 1,5 раза больше чем у однотактных УМ.

При выборе типа для УМ следует учитывать то обстоятельство, что на коллекторе закрытого транзистора действует напряжение, равное примерно 2·E к , что объясняется суммированием E к и напряжения на секции первичной обмотки Tp 2 .

Вследствие того, что каждый транзистор пропускает ток только для одной полуволны гармонического сигнала, режим класса В характеризуется лучшим использованием транзистора по току.

Как уже отмечалось выше, отсутствие тока покоя в УМ класса В приводит к появлению значительных НИ. Вследствие нелинейности входных ВАХ, выходной сигнал в двухтактном УМ класса В имеет переходные искажения типа "ступеньки" (рисунок 4.6).


Рисунок 4.6. Искажения сигнала в двухтактном трансформаторном УМ


Уменьшение НИ возможно путем перехода к режиму класса АВ (см. рисунки 4.2 и 4.6). Т.к. токи покоя в режиме класса АВ малы, то они практически не влияют на энергетические показатели УМ.

Поскольку трансформатор является весьма "неудобным" элементом при выполнении УМ в виде ИМС и вносит существенные искажения в выходной сигнал усилителя, УМ с трансформаторами находят ограниченное применение в современной схемотехнике УУ.

В современной электронике наиболее широко применяются бестрансформаторные двухтактные УМ . Такие УМ имеют хорошие массогабаритные показатели и просто реализуются в виде ИМС.

Возможно построение двухтактных бестрансформаторных УМ по структурной схеме, показанной на рисунке 4.7.

Рисунок 4.7. Структурная схема УМ с использованием ФИ


Здесь ФИ - фазоинверсный каскад предварительного усиления (драйвер), УМ - двухтактный каскад усиления мощности.

В качестве драйвера может использоваться каскад с разделенной нагрузкой (рисунок 4.8).

Рисунок 4.8. Каскад с разделенной нагрузкой


Можно показать, что при , .

Несмотря на такие достоинства, как простота и малые частотные и нелинейные искажения, каскад с разделенной нагрузкой находит ограниченное применение из-за малого K 0 и разных R вых , что приводит к несимметричности АЧХ выходов в областях ВЧ и НЧ.

Гораздо чаще применяются ФИ на основе дифференциального каскада (ДК) (рисунок 4.9).


Рисунок 4.9. Фазоинверсный каскад на основе ДК


ДК будут рассмотрены далее, пока же отметим, что через R э будет протекать удвоенный ток покоя транзисторов VT1 и VT2 и, следовательно, номинал резистора R э в схеме фазоинверсного каскада уменьшается вдвое по сравнению с расчетом каскада с ОЭ.

При рассмотрении, например, левой половины фазоинверсного каскада видно, что в цепи эмиттера транзистора VT1 (включенного с ОЭ) присутствует R э и параллельно ему входное сопротивление транзистора VT2 (включенного с ОБ), R вхОБ ≈1/S 0 .

Обычно берут R э >>R вхОБ (или заменяют R э эквивалентом высокоомного сопротивления в виде источника стабильного тока, который будет рассмотрен в дальнейшем вместе с ДК), поэтому можно подставить вместо R ос в выражение для глубины ПООСТ (см. подраздел 3.2) R вхОБ :

A = 1 + S 0 ·R вхОБ ≈ 1 + S 0 /S 0 = 2

Следовательно, можно считать, что в фазоинверсном каскаде присутствует ПООСТ с глубиной, равной двум. Принимая во внимание, что относительно эмиттера VT2 транзистор VT1 включен по схеме с ОК, нетрудно показать, что при идентичности параметров транзисторов K 01 ≈K 02 ≈K 0 /2, т.е. коэффициенты передачи по напряжению плеч фазоинверсного каскада на основе ДК равны половине коэффициента передачи каскада с ОЭ.

Довольно широко применяется ФИ на комплиментарных транзисторах, вариант схемы которого представлен на рисунке 4.10.

Рисунок 4.10. ФИ на комплиментарных БТ


Использование комплиментарной пары транзисторов VT1 и VT2, имеющих разную проводимость, но одинаковые параметры (например, КТ315-КТ361, КТ502-КТ503, КТ814-КТ815 и др.) позволяет инвертировать фазу входного сигнала на 180° на первом выходе.

Кроме рассмотренных выше каскадов, в качестве фазоинверсных также применяются каскады с ОЭ, включенные согласно структурной схемы, показанной на рисунке 4.11. Отметим, что ФИ, построенный по такой схеме, имеет разбаланс АЧХ и ФЧХ выходов.

Рисунок 4.11. ФИ на основе каскадов с ОЭ


В качестве выходного каскада УМ, подключаемого к выходам ФИ, может использоваться каскад, одна из разновидностей которого приведена на рисунке 4.12.

Рисунок 4.12. Выходной каскад УМ с ФИ


В данном каскаде возможно использование режимов классов В, АВ, С. К достоинствам каскада следует отнести возможность использования мощных транзисторов одного типа проводимости. При использовании двухполярного источника питания возможно непосредственное подключение нагрузки, что позволяет обойтись без разделительного конденсатора на выходе, который обычно имеет большую емкость и габариты и, следовательно, труднореализуем в микроисполнении.

В целом, в УМ, выполненных по структурной схеме, представленной на рисунке 4.7, не достижим высокий КПД вследствие необходимости применения в ФИ режима класса А.

Гораздо лучшими параметрами обладают двухтактные бестрансформаторные УМ, выполненные на комплиментарных транзисторах. Такие УМ принято называть бустерами . Различают бустеры напряжения и тока. Поскольку усиление напряжения обычно осуществляется предварительными каскадами многокаскадного усилителя, а нагрузка УМ, как правило, низкоомная, то наибольшее распространение получили выходные каскады в виде бустера тока.

На рисунке 4.13 приведена схема простейшего варианта бустера тока класса В на комплиментарных транзисторах и двухполярным питанием.

Рисунок 4.13. Токовый бустер класса В


При подаче на вход бустера положительной полуволны входного гармонического сигнала открывается транзистор VT1 и через нагрузку потечет ток. При подаче на вход бустера отрицательной полуволны входного гармонического сигнала открывается транзистор VT2 и через нагрузку потечет ток в противоположном направлении. Таким образом, на будет формироваться выходной сигнал.

Включение транзисторов с ОК позволяет получить малое выходное сопротивление, что необходимо для согласования с низкоомной нагрузкой для передачи в нее максимальной выходной мощности. Большое входное сопротивление позволяет хорошо согласовать каскад с предварительным усилителем напряжения. За счет 100% ПООСН K 0 ≈1.

Благодаря использованию двухполярного источника питания возможна гальваническая связь каскада с нагрузкой, что делает возможным применение токовых бустеров в усилителях постоянного тока. Кроме того, это обстоятельство весьма благоприятно при реализации бустера в виде ИМС.

Существенным недостатком рассматриваемого бустера является большие НИ (K Г >10%), что и ограничивает его практическое использование. Свободным от этого недостатка является токовый бустер класса АВ, схема которого приведена на рисунке 4.14.

Рисунок 4.14. Токовый бустер класса АВ


Начальные токи покоя баз транзисторов здесь задаются с помощью резисторов R б1 и R б2 , а также диодов VD 1 и VD 2 . При интегральном исполнении в качестве диодов используются транзисторы в диодном включении. Напомним, что падение напряжения на прямосмещенном диоде Δφ≈0,7 В, а в кремниевых ИМС с помощью диодов осуществляется параметрическая термостабилизация (см. подраздел 2.6). Сопротивление R согл вводится для лучшего согласования с предыдущим каскадом усилителя.

При положительной полуволне входного гармонического сигнала диод VD 1 подзапирается и на базе VT 1 будет "отслеживаться входной потенциал, что приведет к его отпиранию и формированию на сопротивлении нагрузки положительной полуволны выходного гармонического сигнала. При отрицательной полуволне входного гармонического сигнала работает VD 2 и VT 2 , и на нагрузке формируется отрицательная полуволна выходного гармонического сигнала.

Для увеличения выходной мощности могут быть использованы бустеры на составных транзисторах, включенных по схеме Дарлингтона (рисунок 4.15), у которой коэффициент передачи по току равен произведению коэффициентов передачи тока базы транзисторов VT 1 и VT 2 причем возможна однокристальная реализация данной структуры, например, составной транзистор КТ829.

Рисунок 4.15. Схема Дарлингтона


Из полевых транзисторов в УМ более пригодны МОП-транзисторы с индуцированными каналами n- и p- типа, имеющими такой же характер смещения в цепи затвор-исток, как и у биполярных, но имеющих более линейную входную ВАХ, приводящую к меньшему уровню ВАХ. Схема УМ на ПТ указанного типа приведена на рисунке 4.16.

Рисунок 4.16. УМ на ПТ


В данном каскаде введена положительная ОС по питанию путем включения резистора R св последовательно с R с. В точку a выходное напряжение подается через конденсатор и служит "вольтодобавкой", увеличивающей напряжение питания предоконечного каскада в тот полупериод, в который ток транзистора VT 1 уменьшается. Это позволяет снять с него достаточную амплитуду напряжения, необходимую для управления оконечным истоковым повторителем, повышает выходную мощность и КПД усилителя. Аналогичная схема "вольтодобавки" применяется и в УМ на БТ.

Широкое применение находят УМ, у которых в качестве предварительных каскадов применены операционные усилители. На рисунках 4.17а,б приведены соответствующие схемы УМ режимов класса В и АВ.


Рисунок 4.17. УМ на основе операционных усилителей


Данные примеры иллюстрируют еще одно направление в разработке УМ - применение общей ООС, служащей, в частности, для снижения уровня НИ.

Более подробное описание схем УМ содержится в .

– Сосед запарил по батарее стучать. Сделал музыку громче, чтобы его не слышать.
(Из фольклора аудиофилов).

Эпиграф иронический, но аудиофил совсем не обязательно «больной на всю голову» с физиономией Джоша Эрнеста на брифинге по вопросам отношений с РФ, которого «прёт» оттого, что соседи «счастливы». Кто-то хочет слушать серьезную музыку дома как в зале. Качество аппаратуры для этого нужно такое, какое у любителей децибел громкости как таковых просто не помещается там, где у здравомыслящих людей ум, но у последних оный за разум заходит от цен на подходящие усилители (УМЗЧ, усилитель мощности звуковой частоты). А у кого-то попутно возникает желание приобщиться к полезным и увлекательным сферам деятельности – технике воспроизведения звука и вообще электронике. Которые в век цифровых технологий неразрывно связаны и могут стать высокодоходной и престижной профессией. Оптимальный во всех отношениях первый шаг в этом деле – сделать усилитель своими руками: именно УМЗЧ позволяет с начальной подготовкой на базе школьной физики на одном и том же столе пройти путь от простейших конструкций на полвечера (которые, тем не менее, неплохо «поют») до сложнейших агрегатов, через которые с удовольствием сыграет и хорошая рок-группа. Цель данной публикации – осветить первые этапы этого пути для начинающих и, возможно, сообщить кое-что новое опытным.

Простейшие

Итак, для начала попробуем сделать усилитель звука, который просто работает. Чтобы основательно вникнуть в звукотехнику, придется постепенно освоить довольно много теоретического материала и не забывать по мере продвижения обогащать багаж знаний. Но любая «умность» усваивается легче, когда видишь и щупаешь, как она работает «в железе». В этой статье далее тоже без теории не обойдется – в том, что нужно знать поначалу и что возможно пояснить без формул и графиков. А пока достаточно будет умения и пользоваться мультитестером.

Примечание: если вы до сих пор не паяли электронику, учтите – ее компоненты нельзя перегревать! Паяльник – до 40 Вт (лучше 25 Вт), максимально допустимое время пайки без перерыва – 10 с. Паяемый вывод для теплоотвода удерживается в 0,5-3 см от места пайки со стороны корпуса прибора медицинским пинцетом. Кислотные и др. активные флюсы применять нельзя! Припой – ПОС-61.

Слева на рис. – простейший УМЗЧ, «который просто работает». Его можно собрать как на германиевых, так и на кремниевых транзисторах.

На этой крошке удобно осваивать азы наладки УМЗЧ с непосредственными связями между каскадами, дающими наиболее чистый звук:

  • Перед первым включением питания нагрузку (динамик) отключаем;
  • Вместо R1 впаиваем цепочку из постоянного резистора на 33 кОм и переменного (потенциометра) на 270 кОм, т.е. первый прим. вчетверо меньшего, а второй прим. вдвое большего номинала против исходного по схеме;
  • Подаем питание и, вращая движок потенциометра, в точке, обозначенной крестиком, выставляем указанный ток коллектора VT1;
  • Снимаем питание, выпаиваем временные резисторы и замеряем их общее сопротивление;
  • В качестве R1 ставим резистор номинала из стандартного ряда, ближайшего к измеренному;
  • Заменяем R3 на цепочку постоянный 470 Ом + потенциометр 3,3 кОм;
  • Так же, как по пп. 3-5, в т. а выставляем напряжение, равное половине напряжения питания.

Точка а, откуда снимается сигнал в нагрузку это т. наз. средняя точка усилителя. В УМЗЧ с однополярным питанием в ней выставляют половину его значения, а в УМЗЧ в двухполярным питанием – ноль относительно общего провода. Это называется регулировкой баланса усилителя. В однополярных УМЗЧ с емкостной развязкой нагрузки отключать ее на время наладки не обязательно, но лучше привыкать делать это рефлекторно: разбалансированный 2-полярный усилитель с подключенной нагрузкой способен сжечь свои же мощные и дорогие выходные транзисторы, а то и «новый, хороший» и очень дорогой мощный динамик.

Примечание: компоненты, требующие подбора при наладке устройства в макете, на схемах обозначаются или звездочкой (*), или штрихом-апострофом (‘).

В центре на том же рис. простой УМЗЧ на транзисторах, развивающий уже мощность до 4-6 Вт на нагрузке 4 Ом. Хотя и работает он, как и предыдущий, в т. наз. классе AB1, не предназначенном для Hi-Fi озвучивания, но, если заменить парой таких усилитель класса D (см. далее) в дешевых китайских компьютерных колонках, их звучание заметно улучшается. Здесь узнаем еще одну хитрость: мощные выходные транзисторы нужно ставить на радиаторы. Компоненты, требующие дополнительного охлаждения, на схемах обводятся пунктиром; правда, далеко не всегда; иногда – с указанием необходимой рассеивающей площади теплоотвода. Наладка этого УМЗЧ – балансировка с помощью R2.

Справа на рис. – еще не монстр на 350 Вт (как был показан в начале статьи), но уже вполне солидный зверюга: простой усилитель на транзисторах мощностью 100 Вт. Музыку через него слушать можно, но не Hi-Fi, класс работы – AB2. Однако для озвучивания площадки для пикника или собрания на открытом воздухе, школьного актового или небольшого торгового зала он вполне пригоден. Любительская рок-группа, имея по такому УМЗЧ на инструмент, может успешно выступать.

В этом УМЗЧ проявляются еще 2 хитрости: во-первых, в очень мощных усилителях каскад раскачки мощного выхода тоже нужно охлаждать, поэтому VT3 ставят на радиатор от 100 кв. см. Для выходных VT4 и VT5 нужны радиаторы от 400 кв. см. Во-вторых, УМЗЧ с двухполярным питанием совсем без нагрузки не балансируются. То один, то другой выходной транзистор уходит в отсечку, а сопряженный в насыщение. Затем, на полном напряжении питания скачки тока при балансировке способны вывести из строя выходные транзисторы. Поэтому для балансировки (R6, догадались?) усилитель запитывают от +/–24 В, а вместо нагрузки включают проволочный резистор 100…200 Ом. Кстати, закорючки в некоторых резисторах на схеме – римские цифры, обозначающие их необходимую мощность рассеяния тепла.

Примечание: источник питания для этого УМЗЧ нужен мощностью от 600 Вт. Конденсаторы сглаживающего фильтра – от 6800 мкФ на 160 В. Параллельно электролитическим конденсаторам ИП включаются керамические по 0,01 мкФ для предотвращения самовозбуждения на ультразвуковых частотах, способного мгновенно сжечь выходные транзисторы.

На полевиках

На след. рис. – еще один вариант достаточно мощного УМЗЧ (30 Вт, а при напряжении питания 35 В – 60 Вт) на мощных полевых транзисторах:

Звук от него уже тянет на требования к Hi-Fi начального уровня (если, разумеется, УМЗЧ работает на соотв. акустические системы, АС). Мощные полевики не требуют большой мощности для раскачки, поэтому и предмощного каскада нет. Еще мощные полевые транзисторы ни при каких неисправностях не сжигают динамики – сами быстрее сгорают. Тоже неприятно, но все-таки дешевле, чем менять дорогую басовую головку громкоговорителя (ГГ). Балансировка и вообще наладка данному УМЗЧ не требуются. Недостаток у него, как у конструкции для начинающих, всего один: мощные полевые транзисторы много дороже биполярных для усилителя с такими же параметрами. Требования к ИП – аналогичные пред. случаю, но мощность его нужна от 450 Вт. Радиаторы – от 200 кв. см.

Примечание: не надо строить мощные УМЗЧ на полевых транзисторах для импульсных источников питания, напр. компьютерных. При попытках «загнать» их в активный режим, необходимый для УМЗЧ, они или просто сгорают, или звук дают слабый, а по качеству «никакой». То же касается мощных высоковольтных биполярных транзисторов, напр. из строчной развертки старых телевизоров.

Сразу вверх

Если вы уже сделали первые шаги, то вполне естественным будет желание построить УМЗЧ класса Hi-Fi, не вдаваясь слишком глубоко в теоретические дебри. Для этого придется расширить приборный парк – нужен осциллограф, генератор звуковых частот (ГЗЧ) и милливольтметр переменного тока с возможностью измерения постоянной составляющей. Прототипом для повторения лучше взять УМЗЧ Е. Гумели, подробно описанный в «Радио» №1 за 1989 г. Для его постройки понадобится немного недорогих доступных компонент, но качество удовлетворяет весьма высоким требованиям: мощность до 60 Вт, полоса 20-20 000 Гц, неравномерность АЧХ 2 дБ, коэффициент нелинейных искажений (КНИ) 0,01%, уровень собственных шумов –86 дБ. Однако наладить усилитель Гумели достаточно сложно; если вы с ним справитесь, можете браться за любой другой. Впрочем, кое-какие из известных ныне обстоятельств намного упрощают налаживание данного УМЗЧ, см. ниже. Имея в виду это и то, что в архивы «Радио» пробраться не всем удается, уместно будет повторить основные моменты.

Схемы простого высококачественного УМЗЧ

Схемы УМЗЧ Гумели и спецификация к ним даны на иллюстрации. Радиаторы выходных транзисторов – от 250 кв. см. для УМЗЧ по рис. 1 и от 150 кв. см. для варианта по рис. 3 (нумерация оригинальная). Транзисторы предвыходного каскада (КТ814/КТ815) устанавливаются на радиаторы, согнутые из алюминиевых пластин 75х35 мм толщиной 3 мм. Заменять КТ814/КТ815 на КТ626/КТ961 не стоит, звук заметно не улучшается, но налаживание серьезно затрудняется.

Этот УМЗЧ очень критичен к электропитанию, топологии монтажа и общей, поэтому налаживать его нужно в конструктивно законченном виде и только со штатным источником питания. При попытке запитать от стабилизированного ИП выходные транзисторы сгорают сразу. Поэтому на рис. даны чертежи оригинальных печатных плат и указания по наладке. К ним можно добавить что, во-первых, если при первом включении заметен «возбуд», с ним борются, меняя индуктивность L1. Во-вторых, выводы устанавливаемых на платы деталей должны быть не длиннее 10 мм. В-третьих, менять топологию монтажа крайне нежелательно, но, если очень надо, на стороне проводников обязательно должен быть рамочный экран (земляная петля, выделена цветом на рис.), а дорожки электропитания должны проходить вне ее.

Примечание: разрывы в дорожках, к которым подключаются базы мощных транзисторов – технологические, для налаживания, после чего запаиваются каплями припоя.

Налаживание данного УМЗЧ много упрощается, а риск столкнуться с «возбудом» в процессе пользования сводится к нулю, если:

  • Минимизировать межблочный монтаж, поместив платы на радиаторах мощных транзисторов.
  • Полностью отказаться от разъемов внутри, выполнив весь монтаж только пайкой. Тогда не нужны будут R12, R13 в мощном варианте или R10 R11 в менее мощном (на схемах они пунктирные).
  • Использовать для внутреннего монтажа аудиопровода из бескислородной меди минимальной длины.

При выполнении этих условий с возбуждением проблем не бывает, а налаживание УМЗЧ сводится к рутинной процедуре, описанной на рис.

Провода для звука

Аудиопровода не досужая выдумка. Необходимость их применения в настоящее время несомненна. В меди с примесью кислорода на гранях кристаллитов металла образуется тончайшая пленочка окисла. Оксиды металлов полупроводники и, если ток в проводе слабый без постоянной составляющей, его форма искажается. По идее, искажения на мириадах кристаллитов должны компенсировать друг друга, но самая малость (похоже, обусловленная квантовыми неопределенностями) остается. Достаточная, чтобы быть замеченной взыскательными слушателями на фоне чистейшего звука современных УМЗЧ.

Производители и торговцы без зазрения совести подсовывают вместо бескислородной обычную электротехническую медь – отличить одну от другой на глаз невозможно. Однако есть сфера применения, где подделка не проходит однозначно: кабель витая пара для компьютерных сетей. Положить сетку с длинными сегментами «леварем», она или вовсе не запустится, или будет постоянно глючить. Дисперсия импульсов, понимаешь ли.

Автор, когда только еще пошли разговоры об аудиопроводах, понял, что, в принципе, это не пустая болтовня, тем более, что бескислородные провода к тому времени уже давно использовались в технике спецназначения, с которой он по роду деятельности был хорошо знаком. Взял тогда и заменил штатный шнур своих наушников ТДС-7 самодельным из «витухи» с гибкими многожильными проводами. Звук, на слух, стабильно улучшился для сквозных аналоговых треков, т.е. на пути от студийного микрофона до диска нигде не подвергавшихся оцифровке. Особенно ярко зазвучали записи на виниле, сделанные по технологии DMM (Direct Meta lMastering, непосредственное нанесение металла). После этого межблочный монтаж всего домашнего аудио был переделан на «витушный». Тогда улучшение звучания стали отмечать и совершенно случайные люди, к музыке равнодушные и заранее не предуведомленные.

Как сделать межблочные провода из витой пары, см. след. видео.

Видео: межблочные провода из витой пары своими руками

К сожалению, гибкая «витуха» скоро исчезла из продажи – плохо держалась в обжимаемых разъемах. Однако, к сведению читателей, только из бескислородной меди делается гибкий «военный» провод МГТФ и МГТФЭ (экранированный). Подделка невозможна, т.к. на обычной меди ленточная фторопластовая изоляция довольно быстро расползается. МГТФ сейчас есть в широкой продаже и стоит много дешевле фирменных, с гарантией, аудиопроводов. Недостаток у него один: его невозможно выполнить расцвеченным, но это можно исправить бирками. Есть также и бескислородные обмоточные провода, см. далее.

Теоретическая интермедия

Как видим, уже на первых порах освоения звукотехники нам пришлось столкнуться с понятием Hi-Fi (High Fidelity), высокая верность воспроизведения звука. Hi-Fi бывают разных уровней, которые ранжируются по след. основным параметрам:

  1. Полосе воспроизводимых частот.
  2. Динамическому диапазону – отношению в децибелах (дБ) максимальной (пиковой) выходной мощности к уровню собственных шумов.
  3. Уровню собственных шумов в дБ.
  4. Коэффициенту нелинейных искажений (КНИ) на номинальной (долговременной) выходной мощности. КНИ на пиковой мощности принимается 1% или 2% в зависимости от методики измерений.
  5. Неравномерности амплитудно-частотной характеристики (АЧХ) в полосе воспроизводимых частот. Для АС – отдельно на низких (НЧ, 20-300 Гц), средних (СЧ, 300-5000 Гц) и высоких (ВЧ, 5000-20 000 Гц) звуковых частотах.

Примечание: отношение абсолютных уровней каких-либо величин I в (дБ) определяется как P(дБ) = 20lg(I1/I2). Если I1

Все тонкости и нюансы Hi-Fi нужно знать, занимаясь проектированием и постройкой АС, а что касается самодельного Hi-Fi УМЗЧ для дома, то, прежде чем переходить к таким, нужно четко уяснить себе требования к их мощности, необходимой для озвучивания данного помещения, динамическому диапазону (динамике), уровню собственных шумов и КНИ. Добиться от УМЗЧ полосы частот 20-20 000 Гц с завалом на краях по 3 дБ и неравномерностью АЧХ на СЧ в 2 дБ на современной элементной базе не составляет больших сложностей.

Громкость

Мощность УМЗЧ не самоцель, она должна обеспечивать оптимальную громкость воспроизведения звука в данном помещении. Определить ее можно по кривым равной громкости, см. рис. Естественных шумов в жилых помещениях тише 20 дБ не бывает; 20 дБ это лесная глушь в полный штиль. Уровень громкости в 20 дБ относительно порога слышимости это порог внятности – шепот разобрать еще можно, но музыка воспринимается только как факт ее наличия. Опытный музыкант может определить, какой инструмент играет, но что именно – нет.

40 дБ – нормальный шум хорошо изолированной городской квартиры в тихом районе или загородного дома – представляет порог разборчивости. Музыку от порога внятности до порога разборчивости можно слушать при наличии глубокой коррекции АЧХ, прежде всего по басам. Для этого в современные УМЗЧ вводят функцию MUTE (приглушка, мутирование, не мутация!), включающую соотв. корректирующие цепи в УМЗЧ.

90 дБ – уровень громкости симфонического оркестра в очень хорошем концертном зале. 110 дБ может выдать оркестр расширенного состава в зале с уникальной акустикой, каких в мире не более 10, это порог восприятия: звуки громче воспринимаются еще как различимый по смыслу с усилием воли, но уже раздражающий шум. Зона громкости в жилых помещениях 20-110 дБ составляет зону полной слышимости, а 40-90 дБ – зону наилучшей слышимости, в которой неподготовленные и неискушенные слушатели вполне воспринимают смысл звука. Если, конечно, он в нем есть.

Мощность

Расчет мощности аппаратуры по заданной громкости в зоне прослушивания едва ли не основная и самая трудная задача электроакустики. Для себя в условиях лучше идти от акустических систем (АС): рассчитать их мощность по упрощенной методике, и принять номинальную (долговременную) мощность УМЗЧ равной пиковой (музыкальной) АС. В таком случае УМЗЧ не добавит заметно своих искажений к таковым АС, они и так основной источник нелинейности в звуковом тракте. Но и делать УМЗЧ слишком мощным не следует: в таком случае уровень его собственных шумов может оказаться выше порога слышимости, т.к. считается он от уровня напряжения выходного сигнала на максимальной мощности. Если считать совсем уж просто, то для комнаты обычной квартиры или дома и АС с нормальной характеристической чувствительностью (звуковой отдачей) можно принять след. значения оптимальной мощности УМЗЧ:

  • До 8 кв. м – 15-20 Вт.
  • 8-12 кв. м – 20-30 Вт.
  • 12-26 кв. м – 30-50 Вт.
  • 26-50 кв. м – 50-60 Вт.
  • 50-70 кв. м – 60-100 Вт.
  • 70-100 кв. м – 100-150 Вт.
  • 100-120 кв. м – 150-200 Вт.
  • Более 120 кв. м – определяется расчетом по данным акустических измерений на месте.

Динамика

Динамический диапазон УМЗЧ определяется по кривым равной громкости и пороговым значениям для разных степеней восприятия:

  1. Симфоническая музыка и джаз с симфоническим сопровождением – 90 дБ (110 дБ – 20 дБ) идеал, 70 дБ (90 дБ – 20 дБ) приемлемо. Звук с динамикой 80-85 дБ в городской квартире не отличит от идеального никакой эксперт.
  2. Прочие серьезные музыкальные жанры – 75 дБ отлично, 80 дБ «выше крыши».
  3. Попса любого рода и саундтреки к фильмам – 66 дБ за глаза хватит, т.к. данные опусы уже при записи сжимаются по уровням до 66 дБ и даже до 40 дБ, чтобы можно было слушать на чем угодно.

Динамический диапазон УМЗЧ, правильно выбранного для данного помещения, считают равным его уровню собственных шумов, взятому со знаком +, это т. наз. отношение сигнал/шум.

КНИ

Нелинейные искажения (НИ) УМЗЧ это составляющие спектра выходного сигнала, которых не было во входном. Теоретически НИ лучше всего «затолкать» под уровень собственных шумов, но технически это очень трудно реализуемо. На практике берут в расчет т. наз. эффект маскировки: на уровнях громкости ниже прим. 30 дБ диапазон воспринимаемых человеческим ухом частот сужается, как и способность различать звуки по частоте. Музыканты слышат ноты, но оценить тембр звука затрудняются. У людей без музыкального слуха эффект маскировки наблюдается уже на 45-40 дБ громкости. Поэтому УМЗЧ с КНИ 0,1% (–60 дБ от уровня громкости в 110 дБ) оценит как Hi-Fi рядовой слушатель, а с КНИ 0,01% (–80 дБ) можно считать не искажающим звук.

Лампы

Последнее утверждение, возможно, вызовет неприятие, вплоть до яростного, у адептов ламповой схемотехники: мол, настоящий звук дают только лампы, причем не просто какие-то, а отдельные типы октальных. Успокойтесь, господа – особенный ламповый звук не фикция. Причина – принципиально различные спектры искажений у электронных ламп и транзисторов. Которые, в свою очередь, обусловлены тем, что в лампе поток электронов движется в вакууме и квантовые эффекты в ней не проявляются. Транзистор же прибор квантовый, там неосновные носители заряда (электроны и дырки) движутся в кристалле, что без квантовых эффектов вообще невозможно. Поэтому спектр ламповых искажений короткий и чистый: в нем четко прослеживаются только гармоники до 3-й – 4-й, а комбинационных составляющих (сумм и разностей частот входного сигнала и их гармоник) очень мало. Поэтому во времена вакуумной схемотехники КНИ называли коэффициентом гармоник (КГ). У транзисторов же спектр искажений (если они измеримы, оговорка случайная, см. ниже) прослеживается вплоть до 15-й и более высоких компонент, и комбинационных частот в нем хоть отбавляй.

На первых порах твердотельной электроники конструкторы транзисторных УМЗЧ брали для них привычный «ламповый» КНИ в 1-2%; звук с ламповым спектром искажений такой величины рядовыми слушателями воспринимается как чистый. Между прочим, и самого понятия Hi-Fiтогда еще не было. Оказалось – звучат тускло и глухо. В процессе развития транзисторной техники и выработалось понимание, что такое Hi-Fi и что для него нужно.

В настоящее время болезни роста транзисторной техники успешно преодолены и побочные частоты на выходе хорошего УМЗЧ с трудом улавливаются специальными методами измерений. А ламповую схемотехнику можно считать перешедшей в разряд искусства. Его основа может быть любой, почему же электронике туда нельзя? Тут уместна будет аналогия с фотографией. Никто не сможет отрицать, что современная цифрозеркалка дает картинку неизмеримо более четкую, подробную, глубокую по диапазону яркостей и цвета, чем фанерный ящичек с гармошкой. Но кто-то крутейшим Никоном «клацает фотки» типа «это мой жирный кошак нажрался как гад и дрыхнет раскинув лапы», а кто-то Сменой-8М на свемовскую ч/б пленку делает снимок, перед которым на престижной выставке толпится народ.

Примечание: и еще раз успокойтесь – не все так плохо. На сегодня у ламповых УМЗЧ малой мощности осталось по крайней мере одно применение, и не последней важности, для которого они технически необходимы.

Опытный стенд

Многие любители аудио, едва научившись паять, тут же «уходят в лампы». Это ни в коем случае не заслуживает порицания, наоборот. Интерес к истокам всегда оправдан и полезен, а электроника стала таковой на лампах. Первые ЭВМ были ламповыми, и бортовая электронная аппаратура первых космических аппаратов была тоже ламповой: транзисторы тогда уже были, но не выдерживали внеземной радиации. Между прочим, тогда под строжайшим секретом создавались и ламповые… микросхемы! На микролампах с холодным катодом. Единственное известное упоминание о них в открытых источниках есть в редкой книге Митрофанова и Пикерсгиля «Современные приемно-усилительные лампы».

Но хватит лирики, к делу. Для любителей повозиться с лампами на рис. – схема стендового лампового УМЗЧ, предназначенного именно для экспериментов: SA1 переключается режим работы выходной лампы, а SA2 – напряжение питания. Схема хорошо известна в РФ, небольшая доработка коснулась только выходного трансформатора: теперь можно не только «гонять» в разных режимах родную 6П7С, но и подбирать для других ламп коэффициент включения экранной сетки в ульралинейном режиме; для подавляющего большинства выходных пентодов и лучевых тетродов он или 0,22-0,25, или 0,42-0,45. Об изготовлении выходного трансформатора см. ниже.

Гитаристам и рокерам

Это тот самый случай, когда без ламп не обойтись. Как известно, электрогитара стала полноценным солирующим инструментом после того, как предварительно усиленный сигнал со звукоснимателя стали пропускать через специальную приставку – фьюзер – преднамеренно искажающую его спектр. Без этого звук струны был слишком резким и коротким, т.к. электромагнитный звукосниматель реагирует только на моды ее механических колебаний в плоскости деки инструмента.

Вскоре выявилось неприятное обстоятельство: звучание электрогитары с фьюзером обретает полную силу и яркость только на больших громкостях. Особенно это проявляется для гитар со звукоснимателем типа хамбакер, дающим самый «злой» звук. А как быть начинающему, вынужденному репетировать дома? Не идти же в зал выступать, не зная точно, как там зазвучит инструмент. И просто любителям рока хочется слушать любимые вещи в полном соку, а рокеры народ в общем-то приличный и неконфликтный. По крайней мере те, кого интересует именно рок-музыка, а не антураж с эпатажем.

Так вот, оказалось, что роковый звук появляется на уровнях громкости, приемлемых для жилых помещений, если УМЗЧ ламповый. Причина – специфическое взаимодействие спектра сигнала с фьюзера с чистым и коротким спектром ламповых гармоник. Тут снова уместна аналогия: ч/б фото может быть намного выразительнее цветного, т.к. оставляет для просмотра только контур и свет.

Тем, кому ламповый усилитель нужен не для экспериментов, а в силу технической необходимости, долго осваивать тонкости ламповой электроники недосуг, они другим увлечены. УМЗЧ в таком случае лучше делать бестрансформаторный. Точнее – с однотактным согласующим выходным трансформатором, работающим без постоянного подмагничивания. Такой подход намного упрощает и ускоряет изготовление самого сложного и ответственного узла лампового УМЗЧ.

“Бестрансформаторный” ламповый выходной каскад УМЗЧ и предварительные усилители к нему

Справа на рис. дана схема бестрансформаторного выходного каскада лампового УМЗЧ, а слева – варианты предварительного усилителя для него. Вверху – с регулятором тембра по классической схеме Баксандала, обеспечивающей достаточно глубокую регулировку, но вносящей небольшие фазовые искажения в сигнал, что может быть существенно при работе УМЗЧ на 2-полосную АС. Внизу – предусилитель с регулировкой тембра попроще, не искажающей сигнал.

Но вернемся к «оконечнику». В ряде зарубежных источников данная схема считается откровением, однако идентичная ей, за исключением емкости электролитических конденсаторов, обнаруживается в советском «Справочнике радиолюбителя» 1966 г. Толстенная книжища на 1060 страниц. Не было тогда интернета и баз данных на дисках.

Там же, справа на рис., коротко, но ясно описаны недостатки этой схемы. Усовершенствованная, из того же источника, дана на след. рис. справа. В ней экранная сетка Л2 запитана от средней точки анодного выпрямителя (анодная обмотка силового трансформатора симметричная), а экранная сетка Л1 через нагрузку. Если вместо высокоомных динамиков включить согласующий трансформатор с обычным динамиков, как в пред. схеме, выходная мощность составить ок. 12 Вт, т.к. активное сопротивление первичной обмотки трансформатора много меньше 800 Ом. КНИ этого оконечного каскада с трансформаторным выходом – прим. 0,5%

Как сделать трансформатор?

Главные враги качества мощного сигнального НЧ (звукового) трансформатора – магнитное поле рассеяния, силовые линии которого замыкаются, обходя магнитопровод (сердечник), вихревые токи в магнитопроводе (токи Фуко) и, в меньшей степени – магнитострикция в сердечнике. Из-за этого явления небрежно собранный трансформатор «поет», гудит или пищит. С токами Фуко борются, уменьшая толщину пластин магнитопровода и дополнительно изолируя их лаком при сборке. Для выходных трансформаторов оптимальная толщина пластин – 0,15 мм, максимально допустимая – 0,25 мм. Брать для выходного трансформатора пластины тоньше не следует: коэффициент заполнения керна (центрального стержня магнитопровода) сталью упадет, сечение магнитопровода для получения заданной мощности придется увеличить, отчего искажения и потери в нем только возрастут.

В сердечнике звукового трансформатора, работающего с постоянным подмагничиванием (напр., анодным током однотактного выходного каскада) должен быть небольшой (определяется расчетом) немагнитный зазор. Наличие немагнитного зазора, с одной стороны, уменьшает искажения сигнала от постоянного подмагничивания; с другой – в магнитопроводе обычного типа увеличивает поле рассеяния и требует сердечника большего сечения. Поэтому немагнитный зазор нужно рассчитывать на оптимум и выполнять как можно точнее.

Для трансформаторов, работающих с подмагничиванием, оптимальный тип сердечника – из пластин Шп (просеченных), поз. 1 на рис. В них немагнитный зазор образуется при просечке керна и потому стабилен; его величина указывается в паспорте на пластины или замеряется набором щупов. Поле рассеяния минимально, т.к. боковые ветви, через которые замыкается магнитный поток, цельные. Из пластин Шп часто собирают и сердечники трансформаторов без подмагничивания, т.к. пластины Шп делают из высококачественной трансформаторной стали. В таком случае сердечник собирают вперекрышку (пластины кладут просечкой то в одну, то в другую сторону), а его сечение увеличивают на 10% против расчетного.

Трансформаторы без подмагничивания лучше мотать на сердечниках УШ (уменьшенной высоты с уширенными окнами), поз. 2. В них уменьшение поля рассеяния достигается за счет уменьшения длины магнитного пути. Поскольку пластины УШ доступнее Шп, из них часто набирают и сердечники трансформаторов с подмагничиванием. Тогда сборку сердечника ведут внакрой: собирают пакет из Ш-пластин, кладут полоску непроводящего немагнитного материала толщиной в величину немагнитного зазора, накрывают ярмом из пакета перемычек и стягивают все вместе обоймой.

Примечание: «звуковые» сигнальные магнитопроводы типа ШЛМ для выходных трансформаторов высококачественных ламповых усилителей мало пригодны, у них большое поле рассеяния.

На поз. 3 дана схема размеров сердечника для расчета трансформатора, на поз. 4 конструкция каркаса обмоток, а на поз. 5 – выкройки его деталей. Что до трансформатора для «бестрансформаторного» выходного каскада, то его лучше делать на ШЛМме вперекрышку, т.к. подмагничивание ничтожно мало (ток подмагничивания равен току экранной сетки). Главная задача тут – сделать обмотки как можно компактнее с целью уменьшения поля рассеяния; их активное сопротивление все равно получится много меньше 800 Ом. Чем больше свободного места останется в окнах, тем лучше получился трансформатор. Поэтому обмотки мотают виток к витку (если нет намоточного станка, это маета ужасная) из как можно более тонкого провода, коэффициент укладки анодной обмотки для механического расчета трансформатора берут 0,6. Обмоточный провод – марок ПЭТВ или ПЭММ, у них жила бескислородная. ПЭТВ-2 или ПЭММ-2 брать не надо, у них от двойной лакировки увеличенный наружный диаметр и поле рассеяния будет больше. Первичную обмотку мотают первой, т.к. именно ее поле рассеяния больше всего влияет на звук.

Железо для этого трансформатора нужно искать с отверстиями в углах пластин и стяжными скобами (см. рис. справа), т.к. «для полного счастья» сборка магнитопровода производится в след. порядке (разумеется, обмотки с выводами и наружной изоляцией должны быть уже на каркасе):

  1. Готовят разбавленный вдвое акриловый лак или, по старинке, шеллак;
  2. Пластины с перемычками быстро покрывают лаком с одной стороны и как можно быстрее, не придавливая сильно, вкладывают в каркас. Первую пластину кладут лакированной стороной внутрь, следующую – нелакированной стороной к лакированной первой и т.д;
  3. Когда окно каркаса заполнится, накладывают скобы и туго стягивают болтами;
  4. Через 1-3 мин, когда выдавливание лака из зазоров видимо прекратится, добавляют пластин снова до заполнения окна;
  5. Повторяют пп. 2-4, пока окно не будет туго набито сталью;
  6. Снова туго стягивают сердечник и сушат на батарее и т.п. 3-5 суток.

Собранный по такой технологии сердечник имеет очень хорошие изоляцию пластин и заполнение сталью. Потерь на магнитострикцию вообще не обнаруживается. Но учтите – для сердечников их пермаллоя данная методика неприменима, т.к. от сильных механических воздействий магнитные свойства пермаллоя необратимо ухудшаются!

На микросхемах

УМЗЧ на интегральных микросхемах (ИМС) делают чаще всего те, кого устраивает качество звука до среднего Hi-Fi, но более привлекает дешевизна, быстрота, простота сборки и полное отсутствие каких-либо наладочных процедур, требующих специальных знаний. Попросту, усилитель на микросхемах – оптимальный вариант для «чайников». Классика жанра здесь – УМЗЧ на ИМС TDA2004, стоящей на серии, дай бог памяти, уже лет 20, слева на рис. Мощность – до 12 Вт на канал, напряжение питания – 3-18 В однополярное. Площадь радиатора – от 200 кв. см. для максимальной мощности. Достоинство – способность работать на очень низкоомную, до 1,6 Ом, нагрузку, что позволяет снимать полную мощность при питании от бортовой сети 12 В, а 7-8 Вт – при 6-вольтовом питании, напр., на мотоцикле. Однако выход TDA2004 в классе В некомплементарный (на транзисторах одинаковой проводимости), поэтому звучок точно не Hi-Fi: КНИ 1%, динамика 45 дБ.

Более современная TDA7261 звук дает не лучше, но мощнее, до 25 Вт, т.к. верхний предел напряжения питания увеличен до 25 В. Нижний, 4,5 В, все еще позволяет запитываться от 6 В бортсети, т.е. TDA7261 можно запускать практически от всех бортсетей, кроме самолетной 27 В. С помощью навесных компонент (обвязки, справа на рис.) TDA7261 может работать в режиме мутирования и с функцией St-By (Stand By, ждать), переводящей УМЗЧ в режим минимального энергопотребления при отсутствии входного сигнала в течение определенного времени. Удобства стоят денег, поэтому для стерео нужна будет пара TDA7261 с радиаторами от 250 кв. см. для каждой.

Примечание: если вас чем-то привлекают усилители с функцией St-By, учтите – ждать от них динамики шире 66 дБ не стоит.

«Сверхэкономична» по питанию TDA7482, слева на рис., работающая в т. наз. классе D. Такие УМЗЧ иногда называют цифровыми усилителями, что неверно. Для настоящей оцифровки с аналогового сигнала снимают отсчеты уровня с частотой квантования, не мене чем вдвое большей наивысшей из воспроизводимых частот, величина каждого отсчета записывается помехоустойчивым кодом и сохраняется для дальнейшего использования. УМЗЧ класса D – импульсные. В них аналог непосредственно преобразуется в последовательность широтно-модулированных импульсов (ШИМ) высокой частоты, которая и подается на динамик через фильтр низких частот (ФНЧ).

Звук класса D с Hi-Fi не имеет ничего общего: КНИ в 2% и динамика в 55 дБ для УМЗЧ класса D считаются очень хорошими показателями. И TDA7482 здесь, надо сказать, выбор не оптимальный: другие фирмы, специализирующиеся на классе D, выпускают ИМС УМЗЧ дешевле и требующие меньшей обвязки, напр., D-УМЗЧ серии Paxx, справа на рис.

Из TDAшек следует отметить 4-канальную TDA7385, см. рис., на которой можно собрать хороший усилитель для колонок до среднего Hi-Fi включительно, с разделением частот на 2 полосы или для системы с сабвуфером. Расфильтровка НЧ и СЧ-ВЧ в том и другом случае делается по входу на слабом сигнале, что упрощает конструкцию фильтров и позволяет глубже разделить полосы. А если акустика сабвуферная, то 2 канала TDA7385 можно выделить под суб-УНЧ мостовой схемы (см. ниже), а остальные 2 задействовать для СЧ-ВЧ.

УМЗЧ для сабвуфера

Сабвуфер, что можно перевести как «подбасовик» или, дословно, «подгавкиватель» воспроизводит частоты до 150-200 Гц, в этом диапазоне человеческие уши практически не способны определить направление на источник звука. В АС с сабвуфером «подбасовый» динамик ставят в отельное акустическое оформление, это и есть сабвуфер как таковой. Сабвуфер размещают, в принципе, как удобнее, а стереоэффект обеспечивается отдельными СЧ-ВЧ каналами со своими малогабаритными АС, к акустическому оформлению которых особо серьезных требований не предъявляется. Знатоки сходятся на том, что стерео лучше все же слушать с полным разделением каналов, но сабвуферные системы существенно экономят средства или труд на басовый тракт и облегчают размещение акустики в малогабаритных помещениях, почему и пользуются популярностью у потребителей с обычным слухом и не особо взыскательных.

«Просачивание» СЧ-ВЧ в сабвуфер, а из него в воздух, сильно портит стерео, но, если резко «обрубить» подбасы, что, кстати, очень сложно и дорого, то возникнет очень неприятный на слух эффект перескока звука. Поэтому расфильтровка каналов в сабвуферных системах производится дважды. На входе электрическими фильтрами выделяются СЧ-ВЧ с басовыми «хвостиками», не перегружающими СЧ-ВЧ тракт, но обеспечивающими плавный переход на подбас. Басы с СЧ «хвостиками» объединяются и подаются на отдельный УМЗЧ для сабвуфера. Дофильтровываются СЧ, чтобы не портилось стерео, в сабвуфере уже акустически: подбасовый динамик, ставят, напр., в перегородку между резонаторными камерами сабвуфера, не выпускающими СЧ наружу, см. справа на рис.

К УМЗЧ для сабвуфера предъявляется ряд специфических требований, из которых «чайники» главным считают возможно большую мощность. Это совершенно неправильно, если, скажем, расчет акустики под комнату дал для одной колонки пиковую мощность W, то мощность сабвуфера нужна 0,8(2W) или 1,6W. Напр., если для комнаты подходят АС S-30, то сабвуфер нужен 1,6х30=48 Вт.

Гораздо важнее обеспечить отсутствие фазовых и переходных искажений: пойдут они – перескок звука обязательно будет. Что касается КНИ, то он допустим до 1% Собственные искажения басов такого уровня не слышны (см. кривые равной громкости), а «хвосты» их спектра в лучше всего слышимой СЧ области не выберутся из сабвуфера наружу.

Во избежание фазовых и переходных искажений усилитель для сабвуфера строят по т. наз. мостовой схеме: выходы 2-х идентичных УМЗЧ включают встречно через динамик; сигналы на входы подаются в противофазе. Отсутствие фазовых и переходных искажений в мостовой схеме обусловлено полной электрической симметрией путей выходного сигнала. Идентичность усилителей, образующих плечи моста, обеспечивается применением спаренных УМЗЧ на ИМС, выполненных на одном кристалле; это, пожалуй, единственный случай, когда усилитель на микросхемах лучше дискретного.

Примечание: мощность мостового УМЗЧ не удваивается, как думают некоторые, она определяется напряжением питания.

Пример схемы мостового УМЗЧ для сабвуфера в комнату до 20 кв. м (без входных фильтров) на ИМС TDA2030 дан на рис. слева. Дополнительная отфильтровка СЧ осуществляется цепями R5C3 и R’5C’3. Площадь радиатора TDA2030 – от 400 кв. см. У мостовых УМЗЧ с открытым выходом есть неприятная особенность: при разбалансе моста в токе нагрузки появляется постоянная составляющая, способная вывести из строя динамик, а схемы защиты на подбасах часто глючат, отключая динамик, когда не надо. Поэтому лучше защитить дорогую НЧ головку «дубово», неполярными батареями электролитических конденсаторов (выделено цветом, а схема одной батареи дана на врезке.

Немного об акустике

Акустическое оформление сабвуфера – особая тема, но раз уж здесь дан чертеж, то нужны и пояснения. Материал корпуса – МДФ 24 мм. Трубы резонаторов – из достаточно прочного не звенящего пластика, напр., полиэтилена. Внутренний диаметр труб – 60 мм, выступы внутрь 113 мм в большой камере и 61 в малой. Под конкретную головку громкоговорителя сабвуфер придется перенастроить по наилучшему басу и, одновременно, по наименьшему влиянию на стереоэффект. Для настройки трубы берут заведомо большей длины и, задвигая-выдвигая, добиваются требуемого звучания. Выступы труб наружу на звук не влияют, их потом отрезают. Настройка труб взаимозависима, так что повозиться придется.

Усилитель для наушников

Усилитель для наушников делают своими руками чаще всего по 2-м причинам. Первая – для слушания «на ходу», т.е. вне дома, когда мощности аудиовыхода плеера или смартфона не хватает для раскачки «пуговок» или «лопухов». Вторая – для высококлассных домашних наушников. Hi-Fi УМЗЧ для обычной жилой комнаты нужен с динамикой до 70-75 дБ, но динамический диапазон лучших современных стереонаушников превышает 100 дБ. Усилитель с такой динамикой стоит дороже некоторых автомобилей, а его мощность будет от 200 Вт в канале, что для обычной квартиры слишком много: прослушивание на сильно заниженной против номинальной мощности портит звук, см. выше. Поэтому имеет смысл сделать маломощный, но с хорошей динамикой отдельный усилитель именно для наушников: цены на бытовые УМЗЧ с таким довеском завышены явно несуразно.

Схема простейшего усилителя для наушников на транзисторах дана на поз. 1 рис. Звук – разве что для китайских «пуговок», работает в классе B. Экономичностью тоже не отличается – 13-мм литиевых батареек хватает на 3-4 часа при полной громкости. На поз. 2 – TDAшная классика для наушников «на ход». Звук, впрочем, дает вполне приличный, до среднего Hi-Fi смотря по параметрам оцифровки трека. Любительским усовершенствованиям обвязки TDA7050 несть числа, но перехода звука на следующий уровень классности пока не добился никто: сама «микруха» не позволяет. TDA7057 (поз. 3) просто функциональнее, можно подключать регулятор громкости на обычном, не сдвоенном, потенциометре.

УМЗЧ для наушников на TDA7350 (поз. 4) рассчитан уже на раскачку хорошей индивидуальной акустики. Именно на этой ИМС собраны усилители для наушников в большинстве бытовых УМЗЧ среднего и высокого класса. УМЗЧ для наушников на KA2206B (поз. 5) считается уже профессиональным: его максимальной мощности в 2,3 Вт хватает и для раскачки таких серьезных изодинамических «лопухов», как ТДС-7 и ТДС-15.

Общеизвестно, что качество звучания любого звуковоспроизводящего комплекса во многом зависит от параметров усилителя мощности звуковой частоты (УМЗЧ). К настоящему времени опубликовано множество вариантов транзисторных УМЗЧ, отличающихся порой очень высокими качественными показателями, однако поиск новых схемных решений, позволяющих в еще большей мере приблизить звучание звуковоспроизводящих устройств к естественному, продолжается. В этой статье рассмотрены некоторые пути совершенствования УМЗЧ на современной элементной базе.

Несмотря иа многообразие схем транзисторных УМЗЧ, принципы их построения практически одни и те же. Подобно современным интегральным ОУ они, как правило, двухкаскадные (рис. 1). Основное усиление по напряжению обеспечивают первые два каскада. Выходной же каскад - чаще всего мощный повторитель напряжения, поэтому данная конфигурация УМЗЧ и получила название двухкаскадной.

Критерием качества УМЗЧ является характер и величина вносимых им искажений. Попытаемся классифицировать известные в настоящее время искажения сигнала ЗЧ.

Прежде всего обратим внимание на то, неидеальностью каких характеристик вызван тот или иной их вид. С этой целью разделим искажения на статические и динамические (см. рис. 2). Первые обусловлены нелинейностью статических передаточных характеристик каскадов УМЗЧ (например, нелинейностью входных и выходных характеристик используемых усилительных элементов), вторые - неидеальностью их переходных характеристик, под которыми понимается реакция усилители на скачок входного напряжения. Статические искажения, в свою очередь, можно подразделить на гармонические, выражающиеся в изменении формы исходного сигнала определенной частоты, и интермодуляциоиные, проявляющиеся в обогащении спектра выходного сигнала комбинационными составляющими.

Статические интермодуляцнонные искажения могут быть амплитудными и фазовыми (обусловлены соответственно взаимной амплитудной и фазовой модуляцией входных сигналов). Динамические искажения также можно разделить на гармонические и интермодуляциониые. В первом случае речь идет об искажениях формы входного синусоидального сигнала, когда его амплитуда и частота превышают критические значения, определяемые максимальной скоростью нарастания выходного напряжения. Если же при этих условиях на входе УМЗЧ присутствуют еще и сигналы других частот, то появляются условия для возникновения и сильных интермодуляционных искажений.

Как уже было сказано, динамические искажения зависят, в частности, от такого параметра, как скорость нарастания выходного сигнала V u , которая связана с максимальной частотой f в усиливаемого сигнала максимальной амплитуды соотношением V u =2πf B U m , где U m - максимальная амплитуда выходного напряжения. Если учесть, что выходная синусоидальная мощность P=U m 2 /2R H , где R H - сопротивление нагрузки, то можно получить V u =2πf в √2PR н.

Оценим необходимую для неискаженного звуковоспроизведения скорость нарастания выходного напряжения, если, например, все спектральные составляющие усиливаемого сигнала лежат ниже 20 кГц, а мощность усилителя на нагрузке сопротивлением 4 Ом равна 100 Вт. В этом случае в соответствии с приведенной выше формулой V u =3,6 В/мкс. Дальнейшее увеличение скорости нарастания на динамические искажения в полосе звуковых частот Практически не влияет .

Приведенная классификация удобна тем, что позволяет наиболее полно охарактеризовать искажения, вносимые усилителем. Следует иметь в виду, что все виды искажений взаимосвязаны. Например, изменение коэффициента гармоник неизбежно скажется на интермодуляционных искажениях и т. д.

Человеческое ухо наиболее чувствительно к интермодуляционным искажениям. Их заметность в значительной мере зависит от вида музыкальной программы. Психоакустические исследования показали , что высококвалифицированные эксперты начинали замечать изменения в характере звучания фортепьяно, как только среднеквадратичное значение интермодуляциониых искажений достигало 0,003 % (!). Для сравнения укажем, что порог заметности искажения звучания хора - 0,03 %, скрипки - примерно 0,3 %.

Рассмотрим теперь пути совершенствования отдельных каскадов УМЗЧ с целью построения устройства с минимальными искажениями.

Входной каскад определяет такие важные параметры УМЗЧ, как напряжение смешения «нуля» (постоянная составляющая выходного напряжения усилителя) и его температурную стабильность. От схемотехнического решения этого каскада во многом зависят максимальная скорость нарастания выходного напряжения и отношение сигнал/шум. В подавляющем большинстве современных УМЗЧ входной каскад - дифференциальный. Требования к нему определяются видом ООС, охватывающей весь УМЗЧ. Сопоставим инвертирующий (с параллельной ООС) и неинвертирующий (с последовательной ООС) усилители. Коэффициент усиления неинвертирующего усилителя (рис. 3,а) K U =1+R3/R2, инвертирующего (рис. 3,б) K U =R3/R2. Достоинство неинвертнрующего усилителя - высокое входное сопротивление, которое ограничено у него сопротивлением резисторе R1(200 кОм), в то время как у инвертирующего усилителя оно практически равно сопротивлению резистора R2 (10 кОм).

Для устранения влияния синфазной составляющей и снижения искажений неиивертируюшего усилителя следует повышать выходное сопротивление источника тока и подбирать в дифференциальный каскад пару транзисторов с возможно более близкими параметрами . В тех случаях, когда величина синфазной составляющей достигает нескольких вольт, вместо обычного однотранзисторного источника тока целесообразно использовать более совершенный источник тока на двух транзисторах VT5, VT6 (рис. 4) (3, 7]. В качестве дифференциальной пары VT3, VT4 использована интегральная сборка К159НТ1. транзисторы которой имеют близкие значения статического коэффициента h 21Э и напряжений эмиттер-база. Для снижения рабочего напряжения транзисторов сборки (допустимое напряжение между их коллекторами и эмиттерами составляет 20 В) в коллекторные цепи введены более высоковольтные транзисторы VT1. VT2, включенные по схеме с ОБ. Резисторы R5, R9 также способствуют уменьшению динамических искажений .

Основным способом улучшения качественных показателей УМЗЧ остается введение глубокой ООС, что возможно при достаточно большом коэффициенте усиления исходного (без ООС) усилителя. Усиление же типового входного дифференциального каскада составляет 10 ... 26 дБ. Увеличить его можно, заменив пассивную нагрузку в коллекторных цепях транзисторов VT1, VT2 (рис. 4) активной. Ее функции может выполнять так называемое «токовое зеркало» (рис. 5,а)или «токовое зеркало» со следящей ООС (рис. 5, б). Нетрудно заметить, что в последнем случае напряжение между базой и коллектором транзистора VT2" равно напряжению на эмиттерном переходе транзистора VT3" Благодаря этому падение напряжения на участке эмиттер-коллектор транзистора VT2" не превышает 1,3 ... 1,4 В. Напряжение же между эмиттером и коллектором транзистора VT1" зависит от каскада усиления напряжения, но и оно, как правило, не превышает 3 В. Все это позволяет использовать в «токовом зеркале» транзисторы с малым допустимым напряжением коллектор-эмиттер, в частности, транзисторную сборку КТС3103А.

Следует заметить, что для реализации большого усиления, которое способен обеспечить дифференциальный каскад с такой нагрузкой, входное сопротивление следующего за ним каскада должно быть достаточно высоким.

Во входном каскаде по схеме на рис. 4 можно использовать транзисторы КТ312В. КТ315В. КТ315Г и КТ3102Б и транзисторные матрицы серии К198 (К198НТ1-К198НТ4). Стабилитрон VD1 можно заменить на КС139А, VD3 - на КС175А или КС168А (в последнем случае сопротивление резистора R7 необходимо уменьшить соответственно до 3,3 или 3 кОм, а резистора R3 - увеличить до 3,9 кОм). Стабистор VD2 можно заменить одним-двумя последовательно включенными кремниевыми диодами, транзистор VT3 (рис. 5, б) - транзистором КТ3107Б, КТ3108А, КТ3108В, КТ313А, КТ313Б.

Экспериментальные исследования типового усилителя (рис. 1) показали, что входной каскад и усилитель напряжения вносят примерно равный вклад в ннтермодуляционные искажения УМЗЧ. Авторами был испытан неинвертирующий УМЗЧ с коэффициентом интермодуляционных искажений 0,1 %. Введение в его входной каскад двухтранзисторного источника тока (рис. 4) позволило снизить эти искажения в 3 ... 4 раза.

Усилитель напряжения вносит основной вклад в коэффициент усиления УМЗЧ с разомкнутой ООС. Он должен обеспечивать максимальную амплитуду выходного напряжения при минимальных гармонических и интермодуляционных искажениях, а для согласования с входным каскадом, работающим на активную нагрузку, иметь достаточно высокое входное сопротивление. В типовых УМЗЧ функции усилителя напряжения выполняет обычно каскад на биполярном транзисторе, включенном по схеме ОЭ (рис. 1). Источник тока GI2 играет роль динамической нагрузки и способствует увеличению максимальной амплитуды выходного сигнала. Отметим основные недостатки такого усилителя напряжения.

Начнем с того, что выходные характеристики транзистора, включенного по схеме ОЭ, существенно нелинейны, поскольку его коллекторный ток определяется в этом случае не только током базы, но в значительной степени и напряжением коллектор-эмиттер, которое в усилителях напряжения изменяется на величину размаха выходного сигнала. Эффект же модуляции коллекторного тока напряжением коллектор-эмиттер приводит к значительным гармоническим искажениям (до 10 % и более ).

Известно также, что нелинейность входных характеристик транзистора в рассматриваемом включении приводит к сильной зависимости входного сопротивления каскада от подаваемого на его вход напряжения, а поскольку это напряжение является выходным для предыдущего каскада, характер нагрузки входного каскада становится нелинейным.

И, наконец, емкость коллекторного перехода транзистора, включенного по схеме ОЭ, также изменяется в такт с колебаниями напряжения на коллекторе, в результате чего частота среза усилителя, линейно зависящая от суммарной емкости коллекторного перехода и конденсатора С1 (см. рис. 1), становится зависимой от выходного напряжения этого каскада. Модуляция же частоты среза выходным напряжением приводит к появлению фазовых интермодуляциониых искажений .

Вместо транзисторов КТ3107Г (VT1, VT2) в усилителе можно использовать любые другие кремниевые транзисторы с большим коэффициентом передачи тока h 21э (например, КТ3107 с индексами Л-Ж. К. Л, КТ361 с индексами Б и Е), вместо КТ313А (VT3) - любой транзистор с малым значением h 21Э и большим допустимым напряжением между коллектором и эмиттером. Стабилитрон VD1 можно заменить на КС 139 А.

Недостаток рассмотренного каскада - несколько меньшая (по сравнению с традиционным) амплитуда выходного сигнала из-за падения напряжения на двух транзисторах VT2, VT3 и резисторе R3 - несуществен, так как в большинстве случаев разница не превышает 5 ... 7 %.

Выходной каскад должен обеспечить в низкоомной нагрузке неискаженный сигнал требуемой мощности при высоком КПД. Рассмотрим традиционный каскад (рис. 1) на комплементарных парах транзисторов, включенных по схеме двухтактного эмиттерного повторигеля. В качестве выходных используют обычно мощные комплементарные низкочастотные транзисторы серий KT8I8, КТ819 и др. с граничной частотой 3 ... 4 МГц. При включении таких транзисторов по схеме на рис. 1 в их базах Накапливаются электрические заряды, что эквивалентно наличию внутренней емкости база-эмиттер, которая зависит от граничной частоты и у современных мощных транзисторов может достигать десятых-сотых долей микрофарады.

Рассмотрим это явление подробнее. Допустим, что на вход каскада поступает положительная полуволна сигнала и работает верхнее (по схеме) плечо двухтактного каскада (VT4, VT6). Транзистор VT4 включен по схеме ОК и имеет малое выходное сопротивление. Поэтому протекающий через него ток быстро заряжает входную емкость транзистора VT6 и открывает его. Теперь, чтобы полностью закрыть транзистор VT6, необходимо разрядить эту емкость, а разряжаться она, как нетрудно видеть, может в основном через резисторы R5, R6, причем относительно медленно. При использовании транзистора с граничной частотой 3МГц и резисторов R5, R6 сопротивлением 100 Ом скорость убывания коллекторного тока транзистора VT6 составит примерно 0,15 А/мкс . После смены полярности выходного напряжения включается нижнее (по схеме) плечо выходного каскада. Но поскольку ёмкость база-эмиттер транзистора VT6 к этому времени не успевает разрядиться, он не закрывается и через транзистор VT7, помимо своего, протекает коллекторный ток транзистора VT6. В результате из-за возникновения сквозного тока не только повышается рассеиваемая транзисторами на высоких частотах мощность и падает КПД усилителя, но и растут искажения сигнала. При чрезмерно высокой скорости нарастания выходного напряжения и воздействии на усилитель сигнала высокочастотной помехи возможен даже выход мощных транзисторов из строя .

Простейший способ устранения описанного недостатка - уменьшение сопротивления резисторов R5, R6, однако при этом возрастает мощность, рассеиваемая на транзисторах VT4, VT5. Другой путь - видоизменить схему выходного каскада (рис. 7). Здесь рассасывание избыточного заряда форсировано путем подключения резистора R3 к эмиттеру транзистора VT2, который находится под более отрицательным потенциалом, чем точка, с которой снимается выходное напряжение.

Из-за высокого выходного сопротивления предоконечного каскада избыточный заряд может накапливаться и на базах транзисторов VT1, VT2.

Чтобы этого не произошло, их базы соединены с общим проводом через резисторы Rl, R2. Экспериментальная проверка показала, что описанные меры достаточно эффективны: по сравнению с типовым скорость убывания коллекторного тока в каскаде по схеме на рис. 7 оказывается вчетверо большей (0,6 А/мкс), а вызванные рассмотренным эффектом искажения на частоте 20 кГц - примерно втрое меньшими.

Известно, что наименьшие искажения обеспечивают усилители, работающие а режиме А. Однако в подавляющем большинстве современных усилителей мощности ЗЧ (УМЗЧ) используется режим АВ. Объясняется это низким КПД первых из названных усилителей, что создает определенные трудности, связанные с отводом значительного количества тепла от выходных транзисторов, а также с проблемой обеспечения стабильности тока покой. Так, если а оконечном каскаде, работающем в режиме АВ, изменение этого тока в полтора-два раза вполне допустимо (хотя и нежелательно), то такое же изменение тока покой усилители, работающего в режиме А, может привести к самым серьезным последствиям. Современные мощные комплементарные транзисторы с рассеиваемой на коллекторе мощностью 100 и более ватт смягчают этот недостаток режима А, однако используют его все же преимущественно в УМЗЧ со сравнительно небольшой выходной мощностью. Схема одного из таких УМЗЧ показана на рис. 8. .

Основные технические характеристики усилителя
Номинальное входное напряжение, В 1
Номинальная выходная мощность, Вт 12,5
Сопротивлепие нагрузки. Ом 8
Номинальный диапазон частот (по уровню - 3дБ),Гц 5—225000
Коэффициент гармоник, %, в диапазоне частот 5 ... 20000 Гц при выходной мощности до 10 Bт 0,02
Скорость нарастания выходном напряжения, В/мкс 10
Относительный уровень фона, дБ -85
Относительный уровень шума, дБ -103

Особенность данного УМЗЧ - использование в каждом его плече как транзистора (VT1 И VT2), так и интегрального ОУ (DA1 и DA2). Оба плеча усилителя охвачены ООС. Для снижения искажений коэффициенты усиления обоих плеч должны быть одинаковы, что выполняется при соблюдении равенства: R2/R1=R3/R4.

Ток покоя стабилизируется следящим устройством, состоящим из дифференциального усилителя DA4 и инвертирующего повторителя напряжения DA3. Работает оно так. Любое колебание тока, протекающего через выходные транзисторы, изменяет падение напряжения на резисторах R22, R23, которое усиливается ОУ DA4 И подается на вход ОУ DA2, а через инвертор DA3 - на вход ОУ DA1. Цепи R19C3 и R20C11 образуют фильтры нижних частот, пропускающие на выход ОУ DA4 лишь самые низкочастотные колебания тока покоя. Начальное значение этого тока устанавливают резистором R26. Корректирующие цепи R14C9 и R15C10 предохраняют усилитель от самовозбуждения. Все ОУ питаются стабилизированным напряжением ± 18 В (цепи питании на схеме не показаны).При повторении усилителя транзисторы МJ1001 и MJ901 можно заменить на КТ827 с индексами А, Б и КТ825 с индексами Г, Д соответственно, микросхемы LM301 - на ОУ К153УД2 (в металлическом корпусе) или К553УД2 (в пластмассовом). Возможно также применение ОУ К157УД2 и К153УД6 (модификация ОУ К153УД2) и других ОУ с соответствующими цепями коррекции и напряжениями питания (если они ниже ±18 В, то, естественно, снизится выходная мощность усилителя).


В последнее время удалось существенно повысить КПД УМЗЧ, работающих в режиме А, и приблизить его к значению, характерному для усилителей, работающих в режиме АВ. Это стало возможным благодаря использованию режима работы выходного каскада с плавающей рабочей точкой (ее положение на рабочей характеристике изменяется в зависимости от уровня входного сигнала). На рис. 9 приведена принципиальная схема выходного каскада УМЗЧ , работающего в таком режиме. При увеличении напряжения не входе усилителя растет ток, протекающий через нагрузку, а значит, и через резисторы R10 (положительная полуволна), R11 (отрицательная полуволна). При увеличении падения напряжения на этих резисторах возрастает ток через резисторы R7, R6 и, как следствие этого, уменьшаются токи баз транзисторов VT3, VT2 и увеличиваются напряжения между их коллекторами и эмиттерами. Последнее обстоятельство приводит к увеличению напряжения смещения и соответствующему сдвигу рабочей точки выходных транзисторов в область больших значений тока покоя.

Во всех каскадах усилителя, кроме оконечного (VT12 - VT15), можно использовать практически любые маломощные высокочастотные транзисторы. Для реализации каскадов на транзисторах VT4 - VT7 («токовые зеркала») особенно удобны транзисторные сборки К159НТ1В и КТС3103А. В оконечном каскаде могут работать комплементарные пары транзисторов КТ814 и КТ815, КТ816 и КТ817, КТ818 и КТ819 с любыми, но одинаковыми буквенными индексами.

Частотная коррекция УМЗЧ. Снижения динамических искажений можно достичь, только уделив серьезное внимание частотной Коррекции УМЗЧ, охваченного глубокой ООС. Чтобы лучше разобраться а вопросах, связанных с реализацией оптимальной частотной коррекции, рассмотрим АЧХ типового УМЗЧ с коэффициентом передачи при разомкнутой цепи ООС, равным 60 дБ, а при замкнутой 26 дБ (рис. 10). Чтобы обеспечить такую глубокую ООС во всем диапазоне звуковых частот, полоса пропускания усилителя с разомкнутой цепью ООС должна быть не уже 20 кГц (Первый перегиб АЧХ на частоте f 1). Далее начинается спад усиления с крутизной 20 дБ на декаду. Полоса пропускания усилителя с замкнутой цепью ООС (частота f 2) определяется точкой пересечения АЧХ УМЗЧ с замкнутой и разомкнутой цепью ООС и в нашем случае равна 1 МГц. Для предупреждения самовозбуждения усилителя частота второго перегиба АЧХ f 3 , которая определяется, как правило, граничной частотой транзисторов оконечного каскада, должна быть в области, где коэффициент усиления усилителя с разомкнутой ООС менее 26 дБ.

Реальный звуковой сигнал носит импульсный характер, поэтому хорошее представление о динамических свойствах усилителя можно получить по его реакции на скачок входного напряжения. Эта реакция зависит, как известно, от переходной характеристики усилителя, которая для УМЗЧ с рассмотренной выше формой АЧХ может быть описана с помощью коэффициента затухания ξ вычисляемого по формуле: ξ=1/2√f 3 /f 2 . Переходные характеристики УМЗЧ при различных значениях этого коэффициента приведены на рис. 11. По величине первого выброса выходного напряжения U вых =f(t) можно судить об относительной устойчивости усилителя. Как видно из приведенных на рис. 11 характеристик, наиболее велик он при малых коэффициентах затухания. Такие усилители склонны к самовозбуждению и при прочих равных условиях имеют большие динамические искажения. С точки зрения минимизации искажений наиболее хорош усилитель с апериодической переходной характеристикой (ξ>1). Однако обеспечение такого коэффициента достигается слишком дорогой ценой. Дело в том, что в этом случае усилитель должен иметь АЧХ, частота второго перегиба f 3 которой лежит далеко за пределами полосы пропускания всего УМЗЧ с замкнутой цепью ООС (f 3 ≥4f 2). Реализовать такой усилитель технически очень трудно, поэтому приходится идти на компромисс, задавшись более низким коэффициентом затухания. В литературе в качестве оптимального рекомендуется коэффициент затухания ξ=0,8, при котором f 3 ≥2,6f 2 , а первый выброс выходного напряжения не превышает 1,4 %.

Указанные выше соотношения справедливы лишь для линейной области АЧХ УМЗЧ при условии, что скорость нарастания выходного напряжений усилителя не ограничивает длительность переходного процесса, а частота f 3 достаточно превышает f 2 . При невыполнении этих условий переходный процесс будет затягиваться и иметь более выраженный колебательный характер. Если АЧХ УМЗЧ с разомкнутой цепью ООС такова, что коэффициент усиления К u на частоте f 2 больше 26 дБ (штрих-пунктирная линия на рис. 10), то необходимо скорректировать ее до требуемого вида. В двухкаскйдных УМЗЧ коррекцию чаще всего производят во втором каскаде, приняв меры по обеспечению требуемой скорости нарастания при максимальном выходном сигнале. При этом следует иметь в виду, что максимальная скорость нарастания не связана прямой зависимостью с малосигнальной полосой пропускания усилителя.

Для налаживания усилителя на его вход подают прямоугольные импульсы и, наблюдай переходный процесс УМЗЧ на экране осциллографа, подбором корректирующего конденсатора (С1 на рис. 1 или рис. 5) добиваются еле заметного выброса выходного напряжения.

Таким образом, УМЗЧ с малыми динамическими искажениями должен обеспечивать переходный процесс с ξ не менее 0,8 (см. рис. 11) и иметь достаточную скорость нарастания выходного напряжения. Необходимо так-же выполнение требований по линеаризации всех его каскадов.

Конечное сопротивление «земляных» шин приводит к тому, что импульсы тока по общему проводу с выхода УМЗЧ могут попасть на его вход. Для борьбы с такими помехами обычно рекомендуют увеличивать сечение шин общего провода и соединять все идущие к ним проводники в одной точке. Но наиболее действенным способом защиты является гальваническая развязка общего провода входного каскада от мощной шины питания. Это возможно в УМЗЧ с дифференциальным входным каскадом. С общим проводом источника сигнала (левым по схеме на рис. 12) связаны лишь выводы резисторов R1 и R2. Все остальные проводники, соединенные с общим проводом, подключены к мощной шине источника питания (правой по схеме). Однако в этом случае отключение по каким-либо причинам источника сигнале может привести к выходу УМЗЧ из строй, так как левая «земляная» шина оказывается ни к чему не подсоединенной и состояние выходного каскада становится непредсказуемым. Во избежание такой ситуации обе «земляные» шины соединяют резистором R4. Его сопротивление должно быть не очень малым, чтобы помехи от мощной шины питания не могли проникнуть на вход усилителя, и в то же время не слишком большим, чтобы не влиять на глубину ООС. На практике сопротивление защитного резистора выбирают в пределах от единиц до десятков Ом.


Пути совершенствования УМЗЧ. В последние годы наметилась тенденция улучшения качественных показателей УМЗЧ путем построения полностью двухтактных (включая входные каскады) усилителей с мощными МОП-транзисторами (с изолированным затвором) в выходном каскаде. По сравнению с биполярными МОП-транзисторы выгодно отличаются лучшей линейностью проходных характеристик, высоким входным сопротивлением, хорошими частотными свойствами. У них отсутствует явление вторичного теплового пробоя, так как с увеличением температуры кристалла из-за большой рассеиваемой мощности сопротивление канала транзистора возрастает. Это позволяет в некоторых случаях обойтись без защиты УМЗЧ от тепловых перегрузок. В качестве примера на рис. 13 приведена схема полностью двухтактного усилители с комплементарными парами мощных МОП-транзисторов в выходном каскаде японской фирмы «Hitachi» .

Основные технические характеристики

Двухтактный входной каскад (VT1, VT2; VT4, VT6) позволил обойтись простыми источниками тока на транзисторах VT3 и VT5. Усилитель напряжения построен по схеме, аналогичной приведенной на рис. 6. Для увеличения выходной мощности транзисторы оконечного каскада VT14, VT16 (2SKI34) и VT15, VT17 (2SJ49) соединены параллельно. Фильтр R1C2 защищает вход УМЗЧ от проникания высокочастотных помех. Для исключения разбалансировки усилители из-за входных токов к неинвертирующему и инвертирующему входам подключены резисторы R2 и R27 одинакового сопротивления.

В данном усилителе разделены общие провода входных и выходных каскадов (см. предыдущий раздел), на что указывает изображение резистора R23. Такое неявное указание на разделение общих шин часто встречается в схемах УМЗЧ, публикуемых в зарубежных изданиях.

Ограниченный объем журнальной статьи не позволил познакомить читателей с другими интересными схемотехническими решениями УМЗЧ, поэтому тем, кто интересуется данной тематикой, рекомендуем обратиться к указанной в прилагаемом списке литературы.

ЛИТЕРАТУРА

  1. Cherry Edward M. Amplitude and Phase of Intermodulation Distortion.- Journal of the Audio Engineering Society, 1983, v. 31. № 5, p. 298-303.
  2. Cordell Robert R. Another View on TIM. Part 1.- Audio. 1980, v. 64 №2, p. 38-49.
  3. Cordell Robert R. Phase Intermodulation Distortion Instrumentation and Measurements.- Journal of the Audio Engineering Society, 1983. v. 31. № 3, p. 114-123.
  4. Krauter M. Nf-Verstarker: Der Gesamt-eindruck zait,- Funkschau, 1983, №18, 59-61.
  5. Petrl-Larml M., Otala M., Lammasmieml J. Psychoacoustic Detection Threshold of Transient Intermodulation Distortion.- Journal of the Audio Engineering Society, 1980. v. 28, № 3, p. 98-104.
  6. Достал И. Операционные усилители. Пер. с англ.- М.: Мир, 1982.
  7. Scott Robert F. Power MOSFET Amplifiers.- Radio-Electronics. 1983. v. 54, № 7, p. 80-81.
  8. Leach Marshall W. An Amplifier Input Stage Design Criterion for the Suppression of Dynamic Distortions.- Journal of the Audio Engineering Society, 1981. v. 29, № 4. p. 249-251.
  9. Cherry Edward M. Transient Intermodulation Distortion.- Part I: Hard Nonlinearity.- IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981. v. ASSP-29, № 2. p. 137-146.
  10. Cherry Edward M. Feedback. Sensitivity, and Stability of Audio Power Amplifiers.- Journal of the Audio Engineering Society, 1982, v. 30, № 5. p. 282-294.
  11. Kondo Hikaru. Nuevo conceplo en amplificadores de potencia para audio sistema "super A" de JVC.- Mundo eleutronico, 1980, № 102, p. 75-81.
  12. Borbely Erno. High Power High Quality Amplifier Using MOSFETs.-Wireless World. 1983, v. 89. № 1556. p. 69-75.
  13. Cordell Robert R. Another View of TIM. Part 2.- Audio. 1980, v. 64. № 3. p. 39-40.
  14. Титце У., Шенк К. Полупроводниковая схемотехника. Справочное руководство. Пер. с нем.- М.: Мир, 1982, с. 240.
  15. Pollock N. 12 W class A power amplifier.-Wireless World. 1980. Vol. 86. № 1529, to. 74.
  16. Jung Walter G., Marsh Richard. Selection Capacitors for Optimum Performance. Part I.-Audio, 1980. Vol. 64. № 2. p. 52-86.
  17. Cherry Edward M. A New Distortion Mechanism It Class B. Amplifiers.- journal of the Audio Engineering Society. 1981. Vol. 20, № 5. p. 327-328.
  18. Ефремов В. С. Двухтактные усилители со стабилизацией минимальных токов плеч.-Полупроводниковая электроника в технике связи.- М.: Радио и связь, 1983. вып. 93, с. 87-94.
  19. Sandman A, Low cross-over distortion class B amplifier.- Wireless World. 1971. Vol. 77. № 1429, p. 341.
  20. Horowitz Mannle. How to Design Analog Circuits. Audio Power Amplifiers.- Radio-Etectronics, 1983, Vol. 54. № 5, p. 73-76.
  21. Hood Llnaley J. L. 60-100 W MOSFET Audio Amplifier.- Wireless World, 1982, Vol. 88. № 1558, p. 83-86.
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!