Настройка оборудования и программного обеспечения

Алгоритмизация процессов функционирования систем. Формализация и алгоритмизация процессов функционирования систем - документ Описание математической модели

ФОРМАЛИЗАЦИЯ И АЛГОРИТМИЗАЦИЯ ПРОЦЕССА ФУНКЦИОНИРОВАНИЯ СИСТЕМ

ПОСЛЕДОВАТЕЛЬНОСТЬ РАЗРАБОТКИ И МАШИННОЙ РЕАЛИЗАЦИИ МОДЕЛЕЙ СИСТЕМ

С развитием вычислительной техники наиболее эффективным методом исследования больших систем стало машинное моделиро­вание, без которого невозможно решение многих крупных народно­хозяйственных проблем. Поэтому одной из актуальных задач под­готовки инженеров является освоение теории и методов математического моделирования с учетом требований сис­темности, позволяющих не только строить модели изучаемых объ­ектов, анализировать их динамику и возможность управления ма­шинным экспериментом с моделью, но и судить в известной мере об адекватности создаваемых моделей исследуемым системам, о гра­ницах применимости и правильно организовать моделирование сис­тем на современных средствах вычислительной техники.

Методические аспекты моделирования. Прежде чем рассматривать математические, алгоритмические, программные и прикладные аспекты машинного моделирования, необходимо изучить общие методологические аспекты для широко­го класса математических моделей объектов, реализуемых на сред­ствах вычислительной техники. Моделирование с использованием средств вычислительной техники позволяет ис­следовать механизм явлений, протекающих в реальном объекте с большими или малыми скоростями, когда в натурных эксперимен­тах с объектом трудно (или невозможно) проследить за изменения­ми, происходящими в течение короткого времени, или когда получение достоверных результатов сопряжено с длительным экспериментом. При необходимости машинная модель дает возможность как бы «растягивать» или «сжимать» реальное время, так как ма­шинное моделирование связано с понятием системного времени, отличного от реального. Кроме того, с помощью машинного моде­лирования в диалоговой системе можно обучать персонал, работающий с системой, принятию решений в управлении объектом, например при организа­ции деловой игры, что позволяет выработать необходимые практи­ческие навыки реализации процесса управления.

Сущность машинного моделирования системы состоит в прове­дении на вычислительной машине эксперимента с моделью, которая представляет собой некоторый программный комплекс, описываю­щий формально и (или) алгоритмически поведение элементов сис­темы S в процессе ее функционирования, т. е. в их взаимодействии друг с другом и внешней средой Е. Машинное моделирование с ус­пехом применяют в тех случаях, когда трудно четко сформулиро­вать критерий оценки качества функционирования системы и цель ее не поддается полной формализации, поскольку позволяет сочетать программно-технические возможности ЭВМ со способностями человека мыслить неформальными категориями. В дальнейшем ос­новное внимание будет уделено моделированию систем на универ­сальных ЭВМ как наиболее эффективному инструменту исследо­вания и разработки систем различных уровней.

Требования пользователя к модели. Сформулируем основные требования, предъявляемые к модели М процесса функционирования системы S .

    Полнота модели должна предоставлять пользователю возможность получения необ­ходимого набора оценок характеристик системы с требуемой точ­ностью и достоверностью.

    Гибкость модели должна давать воз­можность воспроизведения различных ситуаций при варьировании структуры, алгоритмов и параметров системы.

    Длительность раз­работки и реализации модели большой системы должна быть по возможности минимальной при учете ограничений на имеющиеся ресурсы.

    Структура модели должна быть блочной, т. е. допускать возможность замены, добавления и исключения некоторых частей без переделки всей модели.

    Информационное обеспечение долж­но предоставлять возможность эффективной работы модели с базой данных систем определенного класса.

    Программные и технические средства должны обеспечивать эффективную (по быстродействию и памяти) машинную реализацию модели и удобное общение с ней пользователя.

    Должно быть реализовано проведение целена­правленных (планируемых) машинных экспериментов с моделью системы с использованием аналитико-имитационного подхода при наличии ограниченных вычислительных ресурсов.

С учетом этих требований рассмотрим основные положения, которые справедливы при моделировании на ЭВМ систем S , а так­же их подсистем и элементов. При машинном моделировании сис­темы S характеристики процесса ее функционирования определяют­ся на основе модели М, построенной исходя из имеющейся исход­ной информации об объекте моделирования. При получении новой информации об объекте его модель пересматривается и уточняется с учетом новой информации, т. е. процесс моделирования, включая разработку и машинную реализацию модели, является итерацион­ным. Этот итерационный процесс продолжается до тех пор, пока не будет получена модель М , которую можно считать адекватной в рамках решения поставленной задачи исследования и проектиро­вания системы S .

Моделирование систем с помощью ЭВМ можно использовать в следующих случаях:

а) для исследования системы S до того, как она спроектирована, с целью определения чувствительно­сти характеристик к изменениям структуры, алгоритмов и пара­метров объекта моделирования и внешней среды;

б) на этапе проектирования системы S для анализа и синтеза различных вари­антов системы и выбора среди конкурирующих такого варианта, который удовлетворял бы заданному критерию оценки эффектив­ности системы при принятых ограничениях;

в) после завершения проектирования и внедрения системы, т. е. при ее эксплуатации, для получения информации, дополняющей результаты натурных испы­таний (эксплуатации) реальной системы, и для получения прогно­зов эволюции (развития) системы во времени.

Существуют общие положения, применяемые ко всем перечис­ленным случаям машинного моделирования. Даже в тех случаях, когда конкретные способы моделирования отличаются друг от друга и имеются различные модификации моделей, например в об­ласти машинной реализации моделирующих алгоритмов с использованием конкретных программно-технических средств, в практике моделирования систем можно сформулировать общие принципы, которые могут быть положены в основу методологии машинного моделирования.

Этапы моделирования систем. Рассмотрим основные этапы моделирования системы S , к числу которых относятся: построение концептуальной модели системы и ее формализация; алгоритмизация модели системы и ее машинная реализация; получение и интерпретация результатов моделирова­ния системы.

Рис. 1. Взаимосвязь этапов моделирования систем

Взаимосвязь перечисленных этапов моделирования систем и их составляющих (подэтапов) может быть представлена в виде сете­вого графика, показанного на рис. 1. Перечислим эти подэтапы: 1.1 - постановка задачи машинного моделирования системы; 1.2 - анализ задачи моделирования системы; 1.3 - определение требова­ний к исходной информации об объекте моделирования и организа­ция ее сбора; 1.4 - выдвижение гипотез и принятие предположений; 1.5 - определение параметров и переменных модели; 1.6 - установ­ление основного содержания модели; 1.7 - обоснование критериев оценки эффективности системы; 1.8 - определение процедур аппрок­симации; 1.9 - описание концептуальной модели системы; 1.10 - проверка достоверности концептуальной модели; 1.11 - составле­ние технической документации по первому этапу; 2.1 - построение логической схемы модели; 2.2 - получение математических соотношений; 2.3 - проверка достоверности модели системы; 2.4 - выбор вычислительных средств для моделирования; 2.5 - составление плана выполнения работ по программированию; 2.6 - построение схемы программы; 2.7 - проверка достоверности схемы программы; 2.8 - проведение программирования модели; 2.9 - проверка досто­верности программы; 2.10 - составление технической документации по второму этапу; 3.1 - планирование машинного эксперимента с моделью системы; 3.2 - определение требований к вычислительным средствам; 3.3 - проведение рабочих расчетов; 3.4 - анализ резуль­татов моделирования системы; 3.5 - представление результатов моделирования; 3.6 - интерпретация результатов моделирования; 3.7 - подведение итогов моделирования и выдача рекомендаций; 3.8 - составление технической документации по третьему этапу.

Таким образом, процесс моделирования системы S сводится к выполнению перечисленных подэтапов, сгруппированных в виде трех этапов. На этапе построения концептуальной модели
и ее формализации проводится исследование моделируемого объекта с точки зрения выделения основных составляющих процесса его функционирования, определяются необходимые аппроксимации и получается обобщенная схема модели системы S , которая преобра­зуется в машинную модель
на втором этапе моделирования путем последовательной алгоритмизации и программирования мо­дели. Последний третий этап моделирования системы сводится к проведению согласно полученному плану рабочих расчетов на ЭВМ с использованием выбранных программно-технических средств, по­лучению и интерпретации результатов моделирования системы S с учетом воздействия внешней среды Е. Очевидно, что при построе­нии модели и ее машинной реализации при получении новой инфор­мации возможен пересмотр ранее принятых решений, т. е. процесс моделирования является итерационным. Рассмотрим содержание каждого из этапов более подробно.

ПОСТРОЕНИЕ КОНЦЕПТУАЛЬНОЙ МОДЕЛИ СИСТЕМЫ И ЕЕ ФОРМАЛИЗАЦИЯ

На первом этапе машинного моделирования - построения концептуальной модели
системы S и ее формализации - формули­руется модель и строится ее формальная схема, т. е. основным на­значением этого этапа является переход от содержательного описа­ния объекта к его математической модели, другими словами, процессу формализации. Моделирование систем на ЭВМ в настоящее время - наиболее универсальный и эффективный метод оценки характеристик боль­ших систем. Наиболее ответственными и наименее формализован­ными моментами в этой работе являются проведение границы меж­ду системой S и внешней средой Е, упрощение описания системы и построение сначала концептуальной, а затем формальной моде­ли системы. Модель должна быть адекватной, иначе невозможно получить положительные результаты моделирования, т. е. исследование процесса функционирования системы на неадекватной модели вообще теряет смысл. Под адекватной моделью будем по­нимать модель, которая с определенной степенью приближения на уровне понимания моделируемой системы S разработчиком модели отражает процесс ее функционирования во внешней среде Е .

Переход от описания к блочной модели. Наиболее рационально строить модель функционирования сис­темы по блочному принципу. При этом могут быть выделены три автономные группы блоков такой модели. Блоки первой группы представляют собой имита­тор воздействий внешней среды Е на систему S ; бло­ки второй группы являются собственно моделью процес­са функционирования иссле­дуемой системы S ; блоки третьей группы - вспомога­тельными и служат для ма­шинной реализации блоков двух первых групп, а также для фиксации и обработки результатов моделирования.

Рассмотрим механизм пе­рехода от описания процесса функционирования некоторой гипотетической системы к модели этого процесса. Для наглядности введем представление об описании свойств процесса функционирования системы S , т. е. об ее концептуальной модели
как совокупности некоторых элементов, условно изображенных квадратами так, как показано на рис. 2, а. Эти квадраты представляют собой описа­ние некоторых подпроцессов исследуемого процесса функционирования системы S , воздействия внешней среды Е и т. д. Переход от описания системы к ее модели в этой интерпретации сводится к исключению из рассмотрения некоторых второстепенных элемен­тов описания (элементы 5-8, 39-41, 43-47 ). Предполагается, что они не оказывают существенного влияния на ход процессов, иссле­дуемых с помощью модели. Часть элементов (14, 15, 28, 29, 42 ) заменяется пассивными связями , отражающими внутренние свойст­ва системы (рис. 2, б). Некоторая часть элементов 1-4, 10, 11, 24, 25 заменяется входными факторами х и воздействиями внешней среды . Возможны и комбинированные замены: элементы 9, 18, 19, 32, 33 заменены пассивной связью и воздействием внешней среды Е . Элементы 22, 23, 36, 37 отражают воздействие системы на внеш­нюю среду у.

Рис. 2. Модель системы: а - концептуальная; б - блочная

Оставшиеся элементы системы S группируются в блоки
, отражающие процесс функционирования исследуемой системы. Каждый из этих блоков достаточно автономен, что выражается в минимальном количестве связей между ними: Поведение этих блоков должно быть хорошо изучено и для каждого из них построена математическая модель, которая в свою очередь может содержать ряд подблоков. Построенная блочная модель процесса функ­ционирования исследуемой системы S предназначена для анализа характеристики этого процесса, который может быть проведен при машинной реализации полученной модели.

Математические модели процессов. После перехода от описания моделируемой системы S к ее мо­дели
, построенной по блочному принципу, необходимо построить математические модели процессов, происходящих в различных бло­ках. Математическая модель представляет собой совокупность соот­ношений (например, уравнений, логических условий, операторов), определяющих характеристики процесса функционирования систе­мы S в зависимости от структуры системы, алгоритмов поведения, параметров системы, воздействий внешней среды Е, начальных условий и времени. Математическая модель является результатом формализации процесса функционирования исследуемой системы, т.е. построения формального (математического) описания процесса с необходимой в рамках проводимого исследования степенью приб­лижения к действительности.

Для иллюстрации возможностей формализации рассмотрим процесс функционирования некоторой гипотетической системы S , которую можно разбить на т подсистем с характеристиками , с параметрами , при наличии вход­ных воздействий и воздействий внешней среды . Тогда математической моделью процесса может слу­жить система соотношений вида

(1)

Если бы функции
были известны, то соотношения (1) оказались бы идеальной математической моделью процесса функционирования системы S . Однако на практике получение мо­дели достаточно простого вида для больших систем чаще всего невозможно, поэтому обычно процесс функционирования системы S разбивают на ряд элементарных подпроцессов. При этом необходи­мо так проводить разбиение на подпроцессы, чтобы построение моделей отдельных подпроцессов было элементарно и не вызывало трудностей при формализации. Таким образом, на этой стадии сущ­ность формализации подпроцессов будет состоять в подборе типо­вых математических схем. Например, для стохастических процессов это могут быть схемы вероятностных автоматов (Р-схемы), схемы массового обслуживания (Q -схемы) и т.д., которые достаточно точ­но описывают основные особенности реальных явлений, составляю­щих подпроцессы, с точки зрения решаемых прикладных задач.

Таким образом, формализации процесса функционирования лю­бой системы S должно предшествовать изучение составляющих его явлений. В результате появляется содержательное описание процес­са, которое представляет собой первую попытку четко изложить закономерности, характерные для исследуемого процесса, и поста­новку прикладной задачи. Содержательное описание является исходным материалом для последующих этапов формализации: построения формализованной схемы процесса функционирования системы и математической модели этого процесса. Для моделиро­вания процесса функционирования системы на ЭВМ необходимо преобразовать математическую модель процесса в соответствую­щий моделирующий алгоритм и машинную программу.

Подэтапы первого этапа моделирования. Рассмотрим более подробно основные подэтапы построения кон­цептуальной модели
системы и ее формализации (см. рис. 1).

1.1. Постановка задачи машинного моделирования системы. Да­ется четкая формулировка задачи исследования конкретной систе­мы S и основное внимание уделяется таким вопросам, как: а) приз­нание существования задачи и необходимости машинного модели­рования; б) выбор методики решения задачи с учетом имеющихся ресурсов; в) определение масштаба задачи и возможности разбие­ния ее на подзадачи.

Необходимо также ответить на вопрос о приоритетности реше­ния различных подзадач, оценить эффективность возможных мате­матических методов и программно-технических средств их решения. Тщательная проработка этих вопросов позволяет сформулировать задачу исследования и приступить к ее реализации. При этом воз­можен пересмотр начальной постановки задачи в процессе модели­рования.

1.2. Анализ задачи моделирования системы. Проведение анализа задачи способствует преодолению возникающих в дальнейшем труд­ностей при ее решении методом моделирования. На рассматривае­мом втором этапе основная работа сводится именно к проведению анализа, включая: а) выбор критериев оценки эффективности про­цесса функционирования системы S ; б) определение эндогенных и экзогенных переменных модели М; в) выбор возможных методов идентификации; г) выполнение предварительного анализа содер­жания второго этапа алгоритмизации модели системы и ее машинной реализации; д) выполнение предварительного анализа содер­жания третьего этапа получения и интерпретации результатов моделирования системы.

1.3. Определение требований к исходной информации об объекте моделирования и организация ее сбора. После постановки задачи моделирования системы S определяются требования к информации, из которой получают качественные и количественные исходные дан­ные, необходимые для решения этой задачи. Эти данные помогают глубоко разобраться в сущности задачи, методах ее решения. Таким образом, на этом подэтапе проводится: а) выбор необходимой ин­формации о системе S и внешней среде Е; б) подготовка априор­ных данных; в) анализ имеющихся экспериментальных данных; г) выбор методов и средств предварительной обработки информа­ции о системе.

При этом необходимо помнить, что именно от качества исходной информации об объекте моделирования существенно зависят как адекватность модели, так и достоверность результатов моделиро­вания.

1.4. Выдвижение гипотез и принятие предположений. Гипотезы при построении модели системы S служат для заполнения «пробе­лов» в понимании задачи исследователем. Выдвигаются также гипо­тезы относительно возможных результатов моделирования системы S , справедливость которых проверяется при проведении машинного эксперимента. Предположения предусматривают, что некоторые данные неизвестны или их нельзя получить. Предположения могут выдвигаться относительно известных данных, которые не отвечают требованиям решения поставленной задачи. Предположения дают возможность провести упрощения модели в соответствии с выбран­ным уровнем моделирования. При выдвижении гипотез и принятии предположений учитываются следующие факторы: а) объем имею­щейся информации для решения задач; б) подзадачи, для которых информация недостаточна; в) ограничения на ресурсы времени для решения задачи; г) ожидаемые результаты моделирования.

Таким образом, в процессе работы с моделью системы S воз­можно многократное возвращение к этому подэтапу в зависимости от полученных результатов моделирования и новой информации об объекте.

1.5. Определение параметров и переменных модели. Прежде чем перейти к описанию математической модели, необходимо опреде­лить параметры системы
, входные и выходные переменные
,
, воздействия внешней среды
. Конечной целью этого подэтапа является подготовка к построению математической модели системы S , функционирующей во внешней среде Е, для чего необходимо рассмотрение всех параметров и пере­менных модели и оценка степени их влияния на процесс функцио­нирования системы в целом. Описание каждого параметра и пере­менной должно даваться в следующей форме: а) определение и краткая характеристика; б) символ обозначения и единица изме­рения; в) диапазон изменения; г) место применения в модели.

1.6. Установление основного содержания модели. На этом подэтапе определяется основное содержание модели и выбирается метод построения модели системы, которые разрабатываются на основе принятых гипотез и предположений. При этом учитываются следующие особенности: а) формулировка задачи моделирования системы; б) структура системы S и алгоритмы ее поведения, воз­действия внешней среды Е; в) возможные методы и средства реше­ния задачи моделирования.

1.7. Обоснование критериев оценки эффективности системы. Для оценки качества процесса функционирования моделируемой систе­мы S необходимо выбрать некоторую совокупность критериев оцен­ки эффективности, т. е. в математической постановке задача сводится к получению соотношения для оценки эффективности как функции параметров и переменных системы. Эта функция пред­ставляет собой поверхность отклика в исследуемой области измене­ния параметров и переменных и позволяет определить реакцию системы. Эффективность системы S можно оценить с помощью ин­тегральных или частных критериев, выбор которых зависит от рас­сматриваемой задачи.

1.8. Определение процедур аппроксимации. Для аппроксимации реальных процессов, протекающих в системе S , обычно использу­ются три вида процедур: а) детерминированную; б) вероятностную; в) определения средних значений.

При детерминированной процедуре результаты моделирования однозначно определяются по данной совокупности входных воздей­ствий, параметров и переменных системы S . В этом случае отсутст­вуют случайные элементы, влияющие на результаты моделирова­ния. Вероятностная (рандомизированная) процедура применяется в том случае, когда случайные элементы, включая воздействия внешней среды Е, влияют на характеристики процесса функцио­нирования системы S и когда необходимо получить информацию о законах распределения выходных переменных. Процедура опреде­ления средних значений используется тогда, когда при моделиро­вании системы интерес представляют средние значения выходных переменных при наличии случайных элементов.

1.9. Описание концептуальной модели системы . На этом подэтапе построения модели системы: а) описывается концептуальная модель
в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) прини­маются окончательно гипотезы и предположения; г) обосновывает­ся выбор процедуры аппроксимации реальных процессов при по­строении модели. Таким образом, на этом подэтапе проводится подробный анализ задачи, рассматриваются возможные методы ее решения и дается детальное описание концептуальной модели
, которая затем используется на втором этапе моделирования.

1.10. Проверка достоверности концептуальной модели. После того как концептуальная модель
описана, необходимо проверить достоверность некоторых концепций модели перед тем, как перейти к следующему этапу моделирования системы S . Проверять досто­верность концептуальной модели достаточно сложно, так как про­цесс ее построения является эвристическим и такая модель описы­вается в абстрактных терминах и понятиях. Один из методов проверки модели
- применение операций обратного перехода, позволяющий проанализировать модель, вернуться к принятым ап­проксимациям и, наконец, рассмотреть снова реальные процессы, протекающие в моделируемой системе S . Проверка достоверности концептуальной модели
должна включать: а) проверку замыс­ла модели; б) оценку достоверности исходной информации; в) рас­смотрение постановки задачи моделирования; г) анализ принятых аппроксимаций; д) исследование гипотез и предположений.

Только после тщательной проверки концептуальной модели
следует переходить к этапу машинной реализации модели, так как ошибки в модели
не позволяют получить достоверные резуль­таты моделирования.

1.11. Составление технической документации по первому этапу. В конце этапа построения концептуальной модели
и ее форма­лизации составляется технический отчет по этапу, который включа­ет в себя: а) подробную постановку задачи моделирования системы S ; б) анализ задачи моделирования системы; в) критерии оценки эффективности системы; г) параметры и переменные модели сис­темы; д) гипотезы и предположения, принятые при построении мо­дели; е) описание модели в абстрактных терминах и понятиях; ж) описание ожидаемых результатов моделирования.

Подэтапы первого этапа моделирования. Алгоритмизация моделей систем и их машинная реализация

Информатика, кибернетика и программирование

Формы представления моделирующих алгоритмов Подэтапы первого этапа моделирования Рассмотрим более подробно основные подэтапы построения концептуальной модели МК системы и ее формализации см. формулировка цели и постановка задачи машинного моделирования системы. Дается четкая формулировка задачи цели и постановка исследования конкретной системы S и основное внимание уделяется таким вопросам как: а признание существования цели и необходимости машинного моделирования; б выбор методики решения задачи с учетом имеющихся ресурсов; в определение...

Лекция 12. Подэтапы первого этапа моделирования. Алгоритмизация моделей систем и их машинная реализация. Принципы построения моделирующих алгоритмов. Формы представления моделирующих алгоритмов

Подэтапы первого этапа моделирования

Рассмотрим более подробно основные подэтапы построения концептуальной модели М К системы и ее формализации (см. рис. 3.1)

1.1. формулировка цели и постановка задачи машинного моделирования системы. Дается четкая формулировка задачи цели и постановка исследования конкретной системы S и основное внимание уделяется таким вопросам, как: а) признание существования цели и необходимости машинного моделирования; б) выбор методики решения задачи с учетом имеющихся ресурсов; в) определение масштаба задачи и возможности разбиения ее на подзадачи. В процессе моделирования возможен пересмотр начальной постановки задачи в зависимости от цели моделирования и цели функционирования системы.

1.2. Анализ задачи моделирования системы. Анализ включает следующие вопросы: а) выбор критериев оценки эффективности процесса функционирования системы S ; б) определение эндогенных и экзогенных переменных модели М ; в) выбор возможных методов идентификации;
г) выполнение предварительного анализа содержания второго этапа алгоритмизации модели системы и ее машинной реализации; д) выполнение предварительного анализа содержания третьего этапа получения и интерпретации результатов моделирования системы.

1.3. Определение требований к исходной информации об объекте моделирования и организация ее сбора. После постановки задачи моделирования системы S определяются требования к информации, из которой получают качественные и количественные исходные данные, необходимые для решения этой задачи. На этом подэтапе проводится:
а) выбор необходимой информации о системе
S и внешней среде Е ;
б) подготовка априорных данных; в) анализ имеющихся экспериментальных данных; г) выбор методов и средств предварительной обработки информации о системе.

1.4. Выдвижение гипотез и принятие предположений. Гипотезы при построении модели системы S служат для заполнения «пробелов» в понимании задачи исследователем. Выдвигаются также гипотезы относительно возможных результатов моделирования системы S, справедливость которых проверяется при проведении машинного эксперимента. Предположения предусматривают, что некоторые данные неизвестны или их нельзя получить. Предположения могут выдвигаться относительно известных данных, которые не отвечают требованиям решения поставленной задачи. Предположения дают возможность провести упрощения модели в соответствии с выбранным уровнем моделирования. При выдвижении гипотез и принятии предположений учитываются следующие факторы: а) объем имеющейся информации для решения задач; б) подзадачи, для которых информация недостаточна; в) ограничения на ресурсы времени для решения задач; г) ожидаемые результаты моделирования.

1.5. Определение параметров и переменных модели. Прежде чем перейти к описанию математической модели, необходимо определить параметры системы , входные и выходные переменные , воздействия внешней среды и оценить степени их влияния на процесс функционирования системы в целом. Описание каждого параметра и переменной должно даваться в следующей форме: а) определение и краткая характеристика; б) символ обозначения и единица измерения; в) диапазон изменений; г) место применения в модели.

1.6. Установление основного содержания модели. На этом подэтапе определяется основное содержание модели и выбирается метод построения модели системы, которые разрабатываются на основе принятых гипотез и предположений. При этом учитываются следующие особенности:
а) формулировка цели и постановка задачи моделирования системы;
б) структура системы
S и алгоритмы ее поведения, воздействия внешней среды Е; в) возможные методы и средства решения задачи моделирования.

1.7. Обоснование критериев оценки эффективности системы. Для оценки качества процесса функционирования моделируемой системы необходимо определить совокупность критериев оценки эффективности как функцию параметров и переменных системы. Эта функция представляет собой поверхность отклика в исследуемой области изменения параметров и переменных и позволяет определить реакцию системы.

1.8. Определение процедур аппроксимации. Для аппроксимации реальных процессов, протекающих в системе S, обычно используются три вида процедур: а) детерминированная; б) вероятностная; в) определение средних значений.

При детерминированной процедуре результаты моделирования однозначно определяются по данной совокупности входных воздействий, параметров и переменных системы S . В этом случае отсутствуют случайные элементы, влияющие на результаты моделирования. Вероятностная (рандомизированная) процедура применяется в том случае, когда случайные элементы, включая воздействия внешней среды Е, влияют на характеристики процесса функционирования системы S и когда необходимо получить информацию о законах распределения выходных переменных. Процедура определения средних значений используется тогда, когда при моделировании системы интерес представляют средние значения выходных переменных при наличии случайных элементов.

1.9. Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М К в абстрактных терминах и понятиях; б) задается целевая функция; в) дается описание модели с использованием типовых математических схем;
г) принимаются окончательно гипотезы и предположения; д) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.

1.10. Проверка достоверности концептуальной модели. После того как концептуальная модель М К описана, необходимо проверить достоверность некоторых концепций модели, перед тем как перейти к следующему этапу моделирования системы S. Один из методов проверки модели М К : применение операций обратного перехода, позволяющих проанализировать модель, вернуться к принятым аппроксимациям и наконец, рассмотреть снова реальные процессы, протекающие в моделируемой системе. Проверка достоверности концептуальной модели М К должна включать: а) проверку замысла модели; б) оценку достоверности исходной информации; в) рассмотрение постановки задачи моделирования; г) анализ принятых аппроксимаций; д) исследование гипотез и предположений.

1.11. Составление технической документации по первому этапу. В конце этапа построения концептуальной модели М К и ее формализации составляется технический отчет по этапу, который включает в себя:
а) подробную постановку задачи моделирования системы
S; б) анализ задачи моделирования системы; в) критерии оценки эффективности системы;
г) параметры и переменные модели системы; д) гипотезы и предположения, принятые при построении модели; е) описание модели в абстрактных терминах и понятиях; ж) описание ожидаемых результатов моделирования системы
S .

3.3. Алгоритмизация моделей систем и их машинная реализация

На втором этапе моделирования – этапе алгоритмизации модели и ее машинной реализации – математическая модель, сформированная на первом этапе, воплощается в конкретную машинную модель.

Принципы построения моделирующих алгоритмов

Процесс функционирования системы S можно рассматривать как последовательную смену ее состояний в -мерном пространстве. Очевидно, что задачей моделирования процесса функционирования исследуемой системы S является построение функций z , на основе которых можно провести вычисление интересующих характеристик процесса функционирования системы. Для этого должны иметься соотношения, связывающие функции z с переменными, параметрами и временем, а также начальные условия в момент времени.

Для детерминированной системы , в которой отсутствуют случайные факторы, состояние процесса в момент времени может быть однозначно определено из соотношений математической модели по известным начальным условиям. Если шаг достаточно мал, то таким путем можно получить приближенные значения z .

Для стохастической системы , т.е. системы, на которую оказывают воздействия случайные факторы, функция состояний процесса z в момент времени и соотношения модели, определяют лишь распределение вероятностей для в момент времени . В общем случае и начальные условия могут быть случайными, задаваемыми соответствующим распределением вероятностей. При этом структура моделирующего алгоритма для стохастических систем соответствует детерминированной системе. Только вместо состояния необходимо вычислять распределение вероятностей для возможных состояний.

Такой принцип построения моделирующих алгоритмов называется принципом. Это наиболее универсальный принцип, позволяющий определить последовательные состояния процесса функционирования системы S через заданные интервалы времени. Но с точки зрения затрат машинного времени он иногда оказывается неэкономичным.

При рассмотрении процессов функционирования некоторых систем можно обнаружить, что для них характерны два типа состояний: 1) особые, присущие процессу функционирования системы только в некоторые моменты времени (моменты поступления входных или управляющий воздействий, возмущений внешней среды и т.п.); 2) не особые, в которых процесс находится все остальное время. Особые состояния характерны еще и тем, что функции состояний в эти моменты времени изменяются скачком, а между особыми состояниями изменение координат происходит плавно и непрерывно или не происходит совсем. Таким образом, следя при моделировании системы S только за ее особыми состояниями в те моменты времени, когда эти состояния имеют место, можно получить информацию, необходимую для построения функции. Очевидно, для описанного типа систем могут быть построены моделирующие алгоритмы по "принципу особых состояний". Обозначим скачкообразное (релейное) изменение состояния z как , а «принцип особых состояний» – как принцип .

«Принцип » дает возможность для ряда систем существенно уменьшить затраты машинного времени на реализацию моделирующих алгоритмов по сравнению с «принципом ». Логика построения моделирующего алгоритма, реализующего «принцип », отличается от рассмотренной для «принципа » только тем, что включает в себя процедуру определения момента времени, соответствующего следующему особому состоянию системы S . Для исследования процесса функционирования больших систем рационально использование комбинированного принципа построения моделирующих алгоритмов, сочетающих в себе преимущества каждого из рассмотренных принципов.

Формы представления моделирующих алгоритмов

Удобной формой представления логической структуры моделей является схема. На различных этапах моделирования составляются обобщенные и детальные логические схемы моделирующих алгоритмов, а также схемы программ.

Обобщенная (укрупненная ) схема моделирующего алгоритма задает общий порядок действий при моделировании систем без каких-либо уточняющих деталей. Обобщенная схема показывает, что необходимо выполнить на очередном шаге моделирования.

Детальная схема моделирующего алгоритма содержит уточнения, отсутствующие в обобщенной схеме. Детальная схема показывает не только то, что следует выполнить на очередном шаге моделирования системы, но и как это выполнить.

Логическая схема моделирующего алгоритма представляет собой логическую структуру модели процесса функционирования системы S. Логическая схема указывает упорядоченную во времени последовательность логических операций, связанных с решением задачи моделирования.

Схема программы отображает порядок программной реализации моделирующего алгоритма с использованием конкретных математического обеспечения и алгоритмического языка.

Логическая схема алгоритма и схема программы могут быть выполнены как в укрупненной, так и в детальной форме. Наиболее употребительные в практике моделирования на ЭВМ символы показаны на рис. 3.3, где изображены основные, специфические и специальные символы процесса. К ним относятся: основной символ: а – процесс; специфические символы процесса: б – решение; в – подготовка; г – предопределенный процесс; д – ручная операция; специальные символы: е – соединитель; ж – терминатор.

Пример изображения схемы моделирующего алгоритма показан на рис. 3.3, з .

Обычно схема является наиболее удобной формой представления структуры моделирующих алгоритмов, например в виде граф-схемы (рис. 3.3, и). Здесь – начало, – конец, – вычисление, – формирование, – проверка условия, – счетчик, – выдача результата, , где g – общее число операторов моделирующего алгоритма. В качестве пояснения к граф-схеме алгоритма в тексте дается раскрытие содержания операторов, что позволяет упростить представление алгоритма, но усложняет работу с ним.

а б з и

в г

д ж

Рис. 3.3. Символы и схемы моделирующих алгоритмов

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Советов Б.Я. Моделирование систем: учеб. для вузов / Б.Я. Советов, С.А. Яковлев. М. : Высш. шк., 2001. 343 с.

2. Советов Б.Я. Моделирование систем: учеб. для вузов / Б.Я. Советов, С.А. Яковлев. 2-е изд. М.: Высшая школа, 1998. 319 с.

3. Тарасик В.П. Математическое моделирование технических систем: учеб. для вузов / В.П. Тарасик. М.: Наука, 1997. 600 с.

4. Введение в математическое моделирование: учеб. пособие для вузов/ под ред. П.В.Тарасова. М.: Интермет Инжиниринг, 2000. 200 с.

5. Ивченко Г.И. Математическая статистика: учебное пособие для втузов / Г.И. Ивченко, Ю.И. Медведев. М.: Высш. шк., 1984. 248 с.

6. Альянах И.Н. Моделирование вычислительных систем / И.Н. Альянах. Л. : Машиностроение , 1988. 233 с.

7. Шеннон Р. Имитационное моделирование систем – искусство и наука / Р. Шеннон. М.: Мир, 1978. 308 с.

П 3

П 4

Ф 5

Р 6

К 7


А также другие работы, которые могут Вас заинтересовать

15330. Создание интерьера бассейна в 3Ds Max 1.96 MB
Тема 6: Создание интерьера бассейна В результате выполнения этой работы Вы должны получить визуализированную сцену изображенную на рисунке. 1. Двумерные формы. Модификаторы двумерных форм Цель: освоить технологию создания д
15332. Основы работ со статическими изображениями в программе трехмерной графики 3ds max 4.96 MB
Тема 5: Основы работ со статическими изображениями в программе трехмерной графики 3ds max. Этапы создания трехмерных сцен Проект Создадим уголок части комнаты в которой располагается стол. На столе стоит бокал со льдом. Для указанно...
15333. Процессы включения и отключения цепи с конденсатором 1.71 MB
Рассчитать докоммутационные t = 0 начальные t = 0 и установившиеся t → ∞ значения токов и напряжения на конденсаторе в цепи Рис. 1. в двух случаях: 1. ключ размыкается; 2. ключ замыкается. R1= 330 Ом; R2=220 Ом; U= 15 В; С= 10 мкФ Рису...
15334. Процессы включения и отключения цепи с катушкой индуктивности 75 KB
Общие сведения Цепь с одной катушкой индуктивности так же как и цепь с одним конденсатором описывается дифференциальным уравнением первого порядка. Поэтому все токи и напряжения в переходном режиме изменяются по экспоненциальному закону с одной и той же постоянной вр
15335. Исследование переходных процессов в линейных электрических цепях 94 KB
Подготовка к работе В замкнутом контуре рис.1 после отключении его от источника постоянного или переменного напряжения могут возникнуть затухающие синусоидальные колебания обусловленные начальным запасом энергии в электрическом поле конденсатора и в магнитном
15336. Изучение алгоритма Дейкстры и реализация его для заданного графа на языке программирования С++ 344.5 KB
Лабораторная работа №1 по дисциплине Структуры и алгоритмы обработки данных Цель работы: Изучение алгоритма Дейкстры и реализация его для заданного графа на языке программирования С. Алгоритм Дейкстры англ. Dijkstras algorithm алгоритм на графах изобретённый н
15337. Изучение алгоритма пирамидальной сортировки и реализация его на языке программирования С++ 49 KB
Лабораторная работа №2 по дисциплине Структуры и алгоритмы обработки данных Цель работы: Изучение алгоритма пирамидальной сортировки и реализация его на языке программирования С. Задание на работу Написать программу генерирующую числовой массив ра
15338. Изучение алгоритма поиска в глубину и реализация его на языке программирования С++ 150 KB
Лабораторная работа №3 по дисциплине Структуры и алгоритмы обработки данных Цель работы: Изучение алгоритма поиска в глубину и реализация его на языке программирования С. Задание на работу Реализовать алгоритм поиска в глубину. Оценить временн...

Вторым этапом моделирования является этап алгоритмизации модели и ее машинная реализация. Этот этап представляет собой этап, направленный на реализацию идей и математических схем в виде машинной модели М процесса функционирования систем S .

Процесс функционирования системы S можно рассматривать как последовательную смену ее состояний в k-мерном пространстве. Задачей моделирования процесса функционирования исследуемой системы S является построение функций z, на основе которых можно провести вычисление интересующих характеристик процесса функционирования системы. Для этого необходимы соотношения, связывающие функции z с переменными, параметрами и временем, а также начальные условиями в момент времени t=t 0 .

Существуют два типа состояний системы:

  • 1) особые, присущие процессу функционирования системы только в некоторые моменты времени;
  • 2) неособые, в которых процесс находится все остальное время. В этом случае функция состояния z i (t) могут изменяться скачкообразно, а между особыми - плавно.

Моделирующие алгоритмы могут быть построены по «принципу особых состояний». Обозначим скачкообразное (релейное) изменение состояния z как z, а «принцип особых состояний» -- как принцип z.

«Принцип дает возможность для ряда систем существенно уменьшить затраты машинного времени на реализацию моделирующих алгоритмов. математическое моделирование модель статистический

Удобной формой представления логической структуры моделей процессов функционирования систем и машинных программ является схема. На различных этапах моделирования составляются следующие схемы моделирующих алгоритмов и программ:

Обобщенная (укрупненная) схема моделирующего алгоритма задает общий порядок действий при моделировании системы без каких-либо уточняющих деталей.

Детальная схема моделирующего алгоритма содержит уточнения, отсутствующие в обобщенной схеме.

Логическая схема моделирующего алгоритма представляет собо логическую структуру модели процесса функционирования систем S .

Схема программы отображает порядок программной реализации моделирующего алгоритма с использованием конкретного математического обеспечения. Схема программы представляет собой интерпретацию логической схемы моделирующего алгоритма разработчиком программы на базе конкретного алгоритмического языка.

Этапы алгоритмизации модели и ее машинной реализации:

  • 1. Построение логической схемы модели.
  • 2. Получение математических соотношении.
  • 3. Проверка достоверности модели системы.
  • 4. Выбор инструментальных средств для моделирования.
  • 5. Составление плана выполнения работ по программированию.
  • 6. Спецификация и построение схемы программы.
  • 7. Верификация и проверка достоверности схемы программы.
  • 8. Проведение программирования модели.
  • 9. Проверка достоверности программы.
  • 10. Составление технической документации по второму этапу.

Моделирование, алгоритмизация и программирование

В настоящее время в деятельности каждого человека возрастает доля умственного труда, требуется решать практические задачи, связанные с обработкой, хранением, передачей информации. В то же время растет число людей, профессионально занятых информационной работой. Для ее автоматизации применяется компьютер как универсальное средство работы с информацией.

Решение задачи с применением компьютера предполагает следующие этапы :

Рассмотрим подробнее каждый из перечисленных этапов.

1. Постановка задачи. Построение информационной модели

Как правило, практические задачи формулируются достаточно понятно с точки зрения пользователя, но такая формулировка не обладает достаточной четкостью и строгостью.

Чтобы такую задачу можно было решить с помощью компьютера, надо выполнить постановку задачи:

Для этого важно определить существенные свойства объектов и явлений , о которых идет речь в задаче, и пренебречь несущественными.

Иногда об этом забывают. Например, если в задаче требуется определить площадь верхней поверхности стола (столешницы), не задумываясь говорят, что надо измерить длину и ширину. Однако существенным свойством стола может оказаться то, что он круглый, тогда затруднительно вести речь о длине и ширине. Кроме того, даже если определили, что столешница имеет прямоугольную форму, следует договориться, что небольшие неровности не оказывают существенного влияния на величину площади.

В примере с прямоугольным столом длина и ширина не могут быть отрицательными числами, а также иметь нереально большие или малые значения.

Все эти сведения образуют информационную модель задачи .

Главное свойство модели – упрощать изучаемое явление, сохраняя его существенные свойства. Информационной моделью задачи можно назвать информацию об объектах и явлениях, фигурирующих в задаче, значимую с точки зрения задачи и зафиксированную в текстовой, числовой или иной сигнальной форме.

Шаги построения информационной модели:

Дадим определение понятия «модель» и возможные классификации.

Модель – это формализованное описание объекта, системы объектов, процесса или явления, выраженное математическими соотношениями, набором числе и (или) текстов, графиками, таблицами, словесными формулами и т.п.

Процесс создания (а иногда и исследования) модели называется моделированием.

Метод познания, состоящий в исследовании объекта по его свойствам, называется моделированием.

Классификация моделей

По области использования

Классификация с учетом фактора времени

По способу представления

По форме представления можно выделит следующие виды информационных моделей:

2. Формализация задачи

На этом этапе происходит фиксация информационной модели , выбирается форма представления данных, образующих информационную модель, наиболее удобная для компьютерной обработки. Часто первые два этапа не имеют четкой границы и могут рассматриваться как единое целое.

Выполнив постановку задачи, создается формализованная модель, т. е. описательная информационная модель записывается с помощью какого-либо формального языка, например математического.

3. Построение алгоритма

Понятие алгоритма – одно из фундаментальных понятий информатики. Алгоритмизация наряду с моделированием выступает в качестве общего метода информатики.

Алгоритмы являются объектом систематического исследования пограничной между математикой и информатикой научной дисциплины, примыкающей к математической логике – теории алгоритмов .

Само слово «алгоритм» происходит от algorithmi – латинской формы написания имени великого математика IX века аль-Хорезми, который сформулировал правила выполнения арифметических действий. Первоначально под алгоритмами и понимали только правила выполнения четырех арифметических действий над многозначными числами.

Алгоритм – понятное и точное предписание исполнителю совершить последовательность действий, направленных на достижение поставленной цели или решение поставленной задачи.

Согласно этому определению рецепты изготовления какого-либо лекарства или печенья являются алгоритмами. И правило безопасного перехода пешеходом проезжей части улицы – тоже алгоритм. По своему назначению алгоритмы могут быть как «бытовыми», так и вычислительными.

Исполнитель – это кто-то или что-то, умеющий выполнять некоторый вполне определенный набор действий. Он обладает следующими свойствами:

Вся совокупность команд, которые данный исполнитель умеет выполнять, называется системой команд исполнителя (СКИ).

Формальное исполнение алгоритмов лежит в основе управления автоматическими устройствами. Действительно, простейшие операции, на которые при создании алгоритма расчленяется процесс решения задачи, может реализовать и машина, специально созданная для выполнения отдельных команд алгоритма и выполняющая их в последовательности, указанной в алгоритме.

Однако и человек может быть формальным исполнителем. Если он не знает цели выполняемой работы, ему придется строго следовать инструкциям.

Компьютер является формальным исполнителем алгоритмов. Чтобы он мог решать задачу в строгом соответствии с инструкциями, он должен получить алгоритм решения. Таким образом, алгоритм является управляющей информацией.

Свойства алгоритмов

Дискретность алгоритма

Исполнение алгоритма распадается на последовательность отдельных шагов. Выполнить каждый шаг предписывает команда. Таким образом, алгоритм представляет собой последовательность команд, определяющих действия исполнителя. Алгоритм имеет прерывистую (дискретную) структуру: только выполнив одну команду, исполнитель может приступить к выполнению следующей. Это свойство называется дискретностью.

Понятность алгоритма

Правильно составленный алгоритм содержит только те команды, которые входят в систему команд исполнителя, для которого он написан. Такое свойство называется понятностью .

Понятными для исполнителя считаются те команды, которые он может выполнить.

Например, человек, не умеющий складывать однозначные числа (не знающий таблицы сложения), не сможет воспользоваться описанным аль-Хорезми порядком сложения многозначных чисел.

Точность алгоритма

Важным свойством алгоритма является точность (определенность, однозначность). Каждая команда алгоритма должна однозначно восприниматься исполнителем и предполагать его определенное действие. Выполнив шаг алгоритма, исполнитель должен точно знать, какой шаг выполнять следующим. Примером неточного алгоритма является фраза из рецепта «всыпать 2-4 столовые ложки сахара» или классическое изречение «казнить нельзя помиловать».

Результативность и конечность алгоритма

Исполнение алгоритма должно приводить к получению результата (свойство результативности ) за конечное число шагов (свойство конечности ).

Массовость алгоритма

Желательно, чтобы алгоритм удовлетворял свойству массовости , т.е. мог быть применен для решения не только одной конкретной задачи, но и некоторого класса однотипных задач.

Например , правило сложения многозначных чисел не зависит от количества разрядов в слагаемых или их цифрового состава. Оно работает, даже если число представлено не в десятичной системе счисления, а в позиционной системе счисления с любым целочисленным основанием.

Способы записи алгоритмов

На практике наиболее распространены следующие формы фиксации алгоритмов:

Словесный способ

Для человека основным является словесный способ.

Например. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел.

Алгоритм может быть следующим:

задать два числа;

если числа равны, то взять любое из них в качестве ответа и остановиться, в противном случае продолжить выполнение алгоритма;

определить большее из чисел;

заменить большее из чисел разностью большего и меньшего из чисел;

повторить алгоритм с шага 2.

Описанный алгоритм применим к любым натуральным числам и должен приводить к решению поставленной задачи. Убедитесь в этом самостоятельно, определив с помощью этого алгоритма наибольший общий делитель чисел 125 и 75.

Словесный способ не имеет широкого распространения по следующим причинам:

Псевдокод

Псевдокод – система обозначений и правил для единообразной и точной записи алгоритмов.

Псевдокод ориентирован на человека, но облегчает перевод на язык программирования, поскольку требует соблюдения определенных правил записи. Примером псевдокода может служить школьный алгоритмический язык.

Отметим, что между понятиями «алгоритмический язык» и «языки программирования» есть различие; прежде всего, под исполнителем в алгоритмическом языке может подразумеваться не только компьютер, но и устройство для работы «в обстановке». Программа, записанная на алгоритмическом языке, не обязательно предназначена компьютеру. Практическая же реализация алгоритмического языка – отдельный вопрос в каждом конкретном случае.

Как и каждый язык, алгоритмический язык имеет свой словарь. Основу этого словаря составляют слова, употребляемые для записи команд, входящих в систему команд исполнителя того или иного алгоритма. Такие команды называют простыми командами. В алгоритмическом языке используют слова, смысл и способ употребления которых задан раз и навсегда. Эти слова называют служебными. Использование служебных слов делает запись алгоритма более наглядной, а форму представления различных алгоритмов – единообразной.

Алгоритм, записанный на алгоритмическом языке, должен иметь название. Название желательно выбирать так, чтобы было ясно, решение какой задачи описывает данный алгоритм. Для выделения названия алгоритма перед ним записывают служебное слово АЛГ (АЛГоритм). За названием алгоритма (обычно с новой строки) записывают его команды. Для указания начала и конца алгоритма его команды заключают в пару служебных слов НАЧ (НАЧало) и КОН (КОНец). Команды записывают последовательно.

Последовательность записи алгоритма:

АЛГ название алгоритма

серия команд алгоритма

Графическое представление алгоритмов

Алгоритм, составленный для некоторого исполнителя, можно представить различными способами: с помощью графического или словесного описания, в виде таблицы, последовательностью формул, записанным на алгоритмическом языке (языке программирования). Остановимся на графическом описании алгоритма, называемом блок-схемой . Этот способ имеет ряд преимуществ благодаря наглядности, обеспечивающей, в частности, высокую «читаемость» алгоритма и явное отображение управления в нем.

Прежде всего определим понятие блок-схемы.

Блок-схема – это ориентированный граф, указывающий порядок исполнения команд алгоритма.

Блок-схема – это графическое представление алгоритма.

В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура , представленная в виде блочного символа. Блочные символы соединяются линиями переходов , определяющими очередность выполнения действий.

В блок-схеме действия алгоритма (блоки) изображаются следующими геометрическими фигурами:

Для организации действий в алгоритме применяют различные формы, называемые алгоритмическими конструкциями. Выделяют три основные алгоритмические конструкции: следование, ветвление, цикл. В математике доказана теорема о том, что любой алгоритм может быть составлен с использованием только этих трех алгоритмических конструкций, хотя существуют и другие конструкции, которые сокращают запись алгоритма, упрощают работу с ним, облегчают понимание.

Конструкция следования (линейный алгоритм)

Конструкция следования – это такая форма организации действий, когда действия выполняются последовательно, одно за другим.

Здесь в качестве серий команд могут выступать:

Фактически, каждый алгоритм можно разбить на достаточно крупные блоки, в состав которых войдут в различном порядке все перечисленные выше объекты, и из таких блоков составить линейный алгоритм.

Пример

Задача: вычислить площадь круга, если известен радиус.

Дано : R - радиус круга.

Найти : S - площадь круга.

Решение : S=3,14 R2

Выберем русский язык для записи алгоритма в этой форме и запишем последовательность команд, выполнение которых при заданном значении радиуса позволит найти площадь:

Прочесть значение R.

Умножить значение R на 3,14.

Умножить результат второго действия на значение R.

Записать полученный результат как значение S.

На языке блок-схем

Эта форма записи основана на замене типичных алгоритмических команд определенными геометрическими фигурами. Алгоритм решения этой задачи выглядит следующим образом (см. рис.).

Конструкция ветвления

Конструкция ветвления – это форма организации действий, при которой в зависимости от выполнения (невыполнения) некоторого условия выполняется одна из двух серий команд.

Если < условие>

то < серия команд 1>

иначе < серия команд 2>

конец ветвления

Пример

Задача : вычислить

Дано : х – значение аргумента.

Найти : у – значение функции.

Решение:

X , если х<0

Вид получившейся графической схемы (см. рис.) объясняет, почему алгоритм, соответствующий ей назвали ветвящимся.

Сделаем словесное представление данного алгоритма.

Начало

Если х>0, то

у: = х

иначе

начало

У: = -х

Конец ветвления

Записать значение у

Конец

Выделяют полную и неполную условную конструкцию.

Введём обозначение:

Q – условие;

P 1 , P 2 , … P N – действия, которые выполняются в случае истинности условия;

T 1 , T 2 , … T N - действия, которые выполняются, если условие ложно.

Блок-схема и алгоритм выглядят следующим образом (см. табл.):

Условные конструкции

Полная

Неполная

Р 1

Р 2

Р N

иначе

Т 1

Т 2

Т N

Конец ветвления

Р 1

Р 2

Р N

Конец ветвления.

Конструкция цикла

Конструкция цикла – это форма организации действий, при которой выполнение одной и той же последовательности действий повторяется несколько раз.

Действия, выполнение которых надо повторять несколько раз, называются телом цикла . Тело цикла представляет собой серию команд. В алгоритме всегда должен присутствовать указатель, отделяющий тело цикла от основной части алгоритма.

Различают два основных типа циклов: цикл с параметром и цикл с условием.

Цикл с параметром

Он применяется, когда количество повторений известно заранее.

При этом параметр (переменная цикла) изменяется от своего начального значения до конечного с заданным шагом и определяет количество повторений.

Запись цикла с параметром на алгоритмическом языке выглядит так:

начальное конечное шаг

для <имя параметра> от < значение > до < значение > шаг <изменения>

параметра параметра параметра

<тело цикла>

Цикл с условием

Он применяется, когда количество повторений заранее неизвестно и зависит от выполнения некоторого условия.

Различают циклы с предусловием и с постусловием .

Цикл с предусловием (цикл «пока»)

Проверка условия происходит перед очередным исполнением тела цикла.

Запись на алгоритмическом языке и в виде блок-схемы:


пока <условие>

< тело цикла >

Пока условие выполняется (соответствующее логическое выражение имеет значение «истина»), повторяется исполнение тела цикла . Как только условие перестало выполняться – прекращается исполнение цикла (выход по лжи).

Если условие изначально не выполняется, тело цикла может не быть исполнено ни разу .

Цикл с постусловием (цикл «до»)

Проверка условия происходит после очередного исполнения тела цикла, т.е. тело цикла обязательно будет исполнено хотя бы один раз.


повторять

< тело цикла >

до < условие >



Исполнение тела цикла происходит, если условие не выполняется (соответствующее логическое выражение имеет значение «ложь»). Как только наступает выполнение условия, исполнение тела цикла прекращается (выход по истине).



4. Составление программы

Чтобы алгоритм мог быть выполнен компьютером, он должен быть записан на понятном ему языке. Однако компьютер воспринимает и может обрабатывать только двоичные коды (последовательности нулей и единиц). Следовательно, исходные данные и команды алгоритма должны быть представлены в двоичных кодах. Однако для человека это весьма неудобно, поэтому были разработаны языки, предназначенные для записи алгоритмов, которые, с одной стороны, близки естественным языкам, а с другой стороны, построены по достаточно строгим правилам, чтобы записанные на них алгоритмы можно было автоматически по формальным правилам перевести в двоичные коды. Такие языки называются языками программирования , а алгоритм, записанный на таком языке (так же, как и алгоритм, записанный в двоичных кодах), называется программой .

С появлением персональных компьютеров этап составления алгоритма во многом соединяется с этапом программирования так же, как и со следующим этапом.

Технологии программирования

Алгоритмическое (модульное) программирование

Основная идея алгоритмического программирования - разбиение программы на последовательность модулей , каждый из которых выполняет одно или несколько действий. Единственное требование к модулю - чтобы его выполнение всегда начиналось с первой команды и всегда заканчивалось на самой последней (то есть, чтобы нельзя было попасть на команды модуля извне и передать управление из модуля на другие команды в обход заключительной).

Алгоритм на выбранном языке программирования записывается с помощью команд описания данных , вычисления значений и управления последовательностью выполнения программы .

Текст программы представляет собой линейную последовательность операторов присваивания, цикла и условных операторов. Таким способом можно решать не очень сложные задачи и составлять программы, содержащие несколько сот строк кода.

В таком программировании используются следующие элементы :

Структурное программирование

При создании средних по размеру приложений (несколько тысяч строк исходного кода) используется структурное программирование , идея которого заключается в том, что структура программы должна отражать структуру решаемой задачи , чтобы алгоритм решения был ясно виден из исходного текста. Для этого надо иметь средства для создания программы не только с помощью трех простых операторов, но и с помощью средств, более точно отражающих конкретную структуру алгоритма. С этой целью в программирование введено понятие подпрограммы - набора операторов, выполняющих нужное действие и не зависящих от других частей исходного кода. Программа разбивается на множество мелких подпрограмм (занимающих до 50 операторов - критический порог для быстрого понимания цели подпрограммы), каждая из которых выполняет одно из действий, предусмотренных исходным заданием. Комбинируя эти подпрограммы, удается формировать итоговый алгоритм уже не из простых операторов, а из законченных блоков кода, имеющих определенную смысловую нагрузку, причем обращаться к таким блокам можно по названиям. Получается, что подпрограммы - это новые операторы или операции языка, определяемые программистом.

Возможность применения подпрограмм относит язык программирования к классу процедурных языков .

Наличие подпрограмм позволяет вести проектирование и разработку приложения сверху вниз - такой подход называется нисходящим проектированием . Сначала выделяется несколько подпрограмм, решающих самые глобальные задачи (например, инициализация данных, главная часть и завершение), потом каждый из этих модулей детализируется на более низком уровне, разбиваясь в свою очередь на небольшое число других подпрограмм, и так происходит до тех пор, пока вся задача не окажется реализованной.

Такой подход удобен тем, что позволяет человеку постоянно мыслить на предметном уровне, не опускаясь до конкретных операторов и переменных. Кроме того, появляется возможность некоторые подпрограммы не реализовывать сразу, а временно откладывать, пока не будут закончены другие части. Например, если имеется необходимость вычисления сложной математической функции, то выделяется отдельная подпрограмма такого вычисления, но реализуется она временно одним оператором, который просто присваивает заранее выбранное значение. Когда все приложение будет написано и отлажено, тогда можно приступить к реализации этой функции.

Немаловажно, что небольшие подпрограммы значительно проще отлаживать, что существенно повышает общую надежность всей программы.

Очень важная характеристика подпрограмм - это возможность их повторного использования . С интегрированными системами программирования поставляются большие библиотеки стандартных подпрограмм, которые позволяют значительно повысить производительность труда за счет использования чужой работы по созданию часто применяемых подпрограмм.

Событийно-ориентированное программирование

С активным распространением системы Windows и появлением визуальных RAD - сред широкую популярность приобрел событийный подход к созданию программ - событийно-ориентированное программирование .

Идеология системы Windows основана на событиях. Щелкнул человек на кнопке, выбрал пункт меню, нажал на клавишу или кнопку мыши - в Windows генерируется подходящее сообщение, которое отсылается окну соответствующей программы. Структура программы, созданной с помощью событийного программирования, следующая. Главная часть представляет собой один бесконечный цикл , который опрашивает Windows , следя за тем, не появилось ли новое сообщение. При его обнаружении вызывается подпрограмма, ответственная за обработку соответствующего события (обрабатываются не все события, их сотни, а только нужные), и подобный цикл опроса продолжается, пока не будет получено сообщение «Завершить работу».

События могут быть пользовательскими , возникшими в результате действий пользователя, системными , возникающими в операционной системе (например, сообщения от таймера), и программными , генерируемыми самой программой (например, обнаружена ошибка и ее надо обработать).

Событийное программирование является развитием идей нисходящего проектирования, когда постепенно определяются и детализируются реакции программы на различные события.

Развитие идей структурного и событийного программирования существенно подняло производительность труда программистов и позволило в разумные сроки (несколько месяцев) создавать приложения объемом в сотни тысяч строк. Однако такой объем уже приблизился к пределу возможностей человека, и потребовались новые технологии разработки программ.

Объектно-ориентированное программирование базируется на понятиях объекта , класса и на трех ключевых концепциях - инкапсуляции , наследовании и полиморфизме .

В языках программирования и реализовано понятие объекта как совокупности свойств (структур данных, характерных для этого объекта), и методов их обработки (подпрограмм изменения свойств) и событий, на которые данный объект может реагировать и которые приводят, как правило, к изменению свойств объекта.

Объекты могут иметь идентичную структуру и отличаться только значениями свойств. В таких случаях в программе создается новый тип , основанный на единой структуре объекта (по аналогии с тем, как создаются новые типы для структур данных). Он называется классом , а каждый конкретный объект, имеющий структуру этого класса, называется экземпляром класса.

Объединение данных c методами в одном типе (классе) называется инкапсуляцией . Помимо объединения, инкапсуляция позволяет ограничивать доступ к данным объектов и реализации методов классов. В результате у программистов появляется возможность использования готовых классов в своих приложениях на основе только описании этих классов.

Важнейшая характеристика класса - возможность создания на его основе новых классов с наследованием всех его свойств и методов и добавлением собственных. Класс, не имеющий предшественника, называется базовым.

Например , класс «студент» имеет свойства «ФИО», «год поступления», методы «посещать занятия» и «сдавать экзамены». Созданный на его основе класс «студент-заочник» наследует все эти свойства и методы, к которым дополнительно добавляется свойство «место работы» и метод «приезжать на сессию» Наследование позволяет создавать новые классы, повторно используя уже готовый исходный код и не тратя времени на его переписывание.

В большинстве случаев методы базового класса у классов-наследников приходится переопределять - объект класса «студент-заочник» выполняет метод «посещать занятия» совсем не так, как объект класса «студент-очник». Все переопределяемые методы по написанию (названию) будут совпадать с методами базового объекта, однако компилятор по типу объекта (его классу) распознает, какой конкретно метод надо использовать, и не вызовет для объекта класса «студент-заочник» метод «посещать занятия» класса «студент». Такое свойство объектов переопределять методы наследуемого класса и корректно их использовать называется полиморфизмом .

  1. Инкапсуляция – объединение в объекте его свойств и возможных над ним операций (методов). Сочетание данных с допустимыми действиями над этими данными приводит к «рождению» нового элемента в конструировании программ – объекта и объект действует, так как в нем заложено, и только над тем, что в нем описано. Обращение к данным объекта не через его действия недопустимо. Объекты, инкапсулирующие одинаковый перечень свойств и операций, объединяются в классы . Каждый отдельный объект является экземпляром класса . Экземпляры класса могут иметь отличающиеся значения свойств.

Например, файловая система компьютера может содержать сотни и тысячи файлов. Все файлы обладают одним и тем же набором свойств (имя, положение в файловой системе) и операций (переименование, перемещение или копирование) и образую класс объектов ФАЙЛЫ. Каждый отдельный файл является экземпляром этого класса и имеет конкретные значения свойств (имя, местоположение и др).

  1. Наследование – определяет отношение между классами: объекты класса-потомок обладают всеми свойствами объектов класса-родитель . То есть каждый следующий производный объект наследует свойства, действия своих предшественников. Механизм наследования позволяет переопределить или добавить новые данные и методы их обработки, создать иерархию классов.

Например. В векторных графических редакторах изображение строится из графических примитивов – точка, линия, окружность и т.д.

Одним из графических примитивов является класс объектов ТОЧКА. В этом классе каждый объект обладает определенными свойствами (Координаты, Цвет), над которыми возможны соответствующие операции (Перемещение, Изменение цвета). Класс объектов ТОЧКА можно задать таблицей

Свойства

Координаты (x,y)

Перемещение

Изменение цвета

Из класса объектов ТОЧКА можно получить новый класс ОКРУЖНОСТЬ, добавив новое свойство Радиус и операцию Изменение радиуса. Класс объектов ОКРУЖНОСТЬ можно задать таблицей.

Свойства

Координаты (x,y)

Перемещение

Изменение цвета

Радиус (R)

Изменение радиуса

Все объекты класса ОКРУЖНОСТЬ наследуют свойства и операции класса ТОЧКА. Класс ТОЧКА называется класс-родитель, класс ОКРУЖНОСТЬ – класс-потомок. Графически это выглядит так:


наследование

  1. Полиморфизм – возможность проведения одних и тех же операций над объектами, принадлежащими разным классам, при сохранении индивидуальных методов их реализации для каждого класса. То есть одна и та же операция над объектами различных классов может выполняться различными методами.

Например. Для большинства класса объектов в среде WINDOWS/OFFICE характерен набор одних и тех же операций – переименование, перемещение, копирование, удаление и т.д. Механизмы реализации этих действий неодинаковы для различных классов. Так, для копирования папки необходимо совершить последовательность действий по изменению файловой системы, а для копирования символа внести изменения в документ. Эти операции будут выполнятся различными программами.

Визуальное программирование

Технологии объектного, событийного и структурного программирования сегодня объединены в RAD -системах , которые содержат множество готовых классов, представленных в виде визуальных компонентов , которые добавляются в программу одним щелчком мыши. Программисту надо только спроектировать внешний вид окон своего приложения и определить обработку основных событий - какие операторы будут выполняться при нажатии на кнопки, при выборе пунктов меню или щелчках мышкой. Весь вспомогательный исходный код среда сгенерирует сама, позволяя программисту полностью сосредоточиться только на реализации алгоритма.

Развитие этой технологии связано с появлением графического интерфейса. Это технология разработки приложений в виде графических объектов, с последующим переводом их в программный код. В 90-х годах появляется технология RAD – Rapid Application Development – быстрая разработка приложений. Все необходимые элементы оформления и управления создаются и обслуживаются не путем ручного программирования, а с помощью готовых визуальных компонентов, которые с помощью мыши перетаскиваются в проектируемое окно. Свойства и поведение компонентов настраиваются с помощью простых редакторов, визуально показывающих характеристики соответствующих элементов. При этом исходный текст программы генерируется RAD-средой автоматически.

RAD-среды предназначены для разработки, при активном участии пользователей, информационных систем для бизнес-приложений. RAD призвана обеспечить высокую скорость разработки системы при одновременном повышении качества программного продукта и снижении его стоимости.

Из универсальных языков программирования сегодня наиболее популярны следующие:

Бейсик (Basic) - для освоения требует начальной подготовки (общеобразовательная школа);

Паскаль (Pascal) - требует специальной подготовки (школы с углубленным
изучением предмета и общетехнические вузы);

Си++ (C++), Ява (Java), Си Шарп (С#) - требуют профессиональной подго­товки (специализированные средние и высшие учебные заведения).

Для каждого из этих языков программирования сегодня имеется немало систем программирования, выпускаемых различными фирмами и ориентированных на различные модели ПК и операционные системы. Наиболее популярны следую­щие визуальные среды быстрого проектирования программ для Windows:

Basic: Microsoft Visual Basic;

Pascal: Borland Delphi;

C++: Microsoft Visual C++;

Java: BorlandJBuilder,

C#: Microsoft Visual Studio .NET, Borland С#Builder.

Для разработки серверных и распределенных приложений можно использовать систему программирования Microsoft Visual C++, продукты фирмы Borland, прак­тически любые средства программирования на java.

5. Ввод программы в память компьютера. Пробный запуск

На больших вычислительных центрах, при решении достаточно больших и сложных задач вводом программ занимаются люди специальной профессии – операторы ЭВМ. Кроме ввода программ операторы выполняют подготовку данных – ввод данных в память, запись их на внешние носители. Программист, работающий на ПК, вводит программу и данные сам.

После того как программа введена, следует ее пробный запуск. В случаях, которые следует считать исключительными, программа исполняется сразу и выдает некоторый результат. Гораздо чаще приходится отыскивать причины, по которым программа не работает или работает не так, и исправлять их – отлаживать программу.

6. Отладка и тестирование программы

Процесс поиска и исправления ошибок в программе называется отладкой . Ошибки могут возникнуть при наборе, в результате нарушения правил записи программ на языке программирования – так называемые синтаксические ошибки . Обнаружить и исправить их помогают специальные инструментальные программы (программы синтаксического контроля), входящие в состав системы программирования. Система анализирует программу и выдает сообщение о месте и характере ошибки. Часто ошибки связаны с тем, что некоторая синтаксически правильная конструкция не может быть выполнена (например, деление на нуль или попытка присвоить величине целого типа вещественное значение). В этом случае также появляется сообщение о причине отказа и указывается, какая именно команда не может быть выполнена.

Гораздо сложнее отыскать ошибки, допущенные при составлении алгоритма , которые, в конечном итоге, приводят к неправильной работе программы: отсутствие результата, зацикливание, неверный результат. В этом случае полезен бывает пошаговый контроль выполнения программы.

Важным этапом процесса отладки является тестирование программы, т.е. испытание ее путем введения теста – определенного набора исходных данных, для которого результат работы отдельных блоков или программы в целом известен заранее.

Часто в рамках разработки информационной модели накладываются ограничения на исходные данные. В этом случае программа должна реагировать на ввод неверных значений: останавливать работу или запрашивать повторный ввод. Как правило, в программе предусматривается защита от ввода неверных данных или от других непредусмотренных действий пользователя. Тогда в процессе тестирования проверяется качество такой защиты.

Умение удачно подобрать такой тест, при котором ошибка (если она есть) наиболее вероятна, и предусмотреть разнообразные варианты хода вычислительного процесса, а также действия пользователя (порой весьма непредсказуемые), и, следовательно, защитить работу программы от всяких неожиданностей – большое искусство программиста.

Простейший пример теста: если программа содержит ветвление, т.е. требуется выбор способа действий в зависимости от выполнения условия, надо проверять ее работу с теми исходными данными, при которых условие выполняется, и с теми, при которых оно не выполняется.

До последнего времени 4, 5 и 6 этапы были необходимыми этапами решения задачи с помощью ЭВМ. При этом языки и системы программирования были теми программными инструментами, с помощью которых создавались новые программы для решения задач пользователя. Однако с расширением круга задач, для решения которых используется компьютер, растет число людей, которые, не будучи профессиональными программистами, применяют компьютер в своей работе.

В связи с этим созданы разнообразные программные средства, которые являются основой информационных технологий , применяемых для решения разнообразных практических задач, таких, как обработка текстов и электронных таблиц, создание графических изображений, доступ к информации, хранящейся в базе данных, решение математической задачи, расчет технической конструкции и многое другое. Для их решения в распоряжении пользователя ЭВМ имеется обширное программное обеспечение.

В процессе построения информационной модели задачи пользователь определяет, какие действия ему потребуется выполнить для достижения результата, и в соответствии с этим решает, каким программным средством воспользоваться. Если в его распоряжении имеется программа, подходящая для решения данной задачи, то пользователь выбирает ее в качестве инструмента (СУБД, табличный процессор, математический пакет и др.). Если же готовым прикладным программным средством воспользоваться нельзя, придется использовать технологию программирования.

7. Получение и анализ результатов

Какая бы технология решения задач на компьютере ни использовалась, необходимым этапом будет получение и анализ результата: проверяется соответствие полученных результатов ожидаемому в рамках построенной информационной модели задачи, а также оценивается, насколько полученный результат соотносится с реальной практикой.

На этом этапе выявляется, насколько построенная информационная модель соответствует реальности. Дело в том, что чем больше свойств объектов и явлений признано существенными и учтено, тем в большей степени модель отражает действительность. Однако учет большого числа характеристик ведет к усложнению модели, затруднениям в математическом выражении связей между характеристиками. Обычно стараются найти баланс между полнотой соответствия информационной модели реальному состоянию дел и ее сложностью в процессе уточнения модели (постепенного увеличения числа учитываемых существенных свойств).

Вопросы для подготовки к контрольной работе по теме «Моделирование, алгоритмизация, программирование»

Задержки транзактов по заданному времени. Статическое моделирование служит для описаний поведения объекта в какой-либо момент времени. Динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для отображения объекта в определенный момент времени.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Другие похожие работы, которые могут вас заинтересовать.вшм>

9929. Алгоритмические методы защиты информации 38.36 KB
Для нормального и безопасного функционирования этих систем необходимо поддерживать их безопасность и целостность. Что такое криптография Криптография наука о шифрах – долгое время была засекречена так как применялась в основном для защиты государственных и военных секретов. В настоящее время методы и средства криптографии используются для обеспечения информационной безопасности не только государства но и частных лиц организаций. Пока криптографические алгоритмы для рядового потребителя – тайна за семью печатями хотя многим уже...
1927. Моделирование систем 21.47 KB
В студенческом машинном зале расположены две мини ЭВМ и одно устройство подготовки данных (УПД). Студенты приходят с интервалом в 8±2 мин и треть из них хочет использовать УПД и ЭВМ, а остальные только ЭВМ. Допустимая очередь в машинном зале составляет четыре человека, включая работающего на УПД.
1974. МОДЕЛИРОВАНИЕ ПОВЕРХНОСТЕЙ 233.46 KB
Поверхность и цифровая модель Основой для представления данных о земной поверхности являются цифровые модели рельефа. Поверхности – это объекты которые чаще всего представляются значениями высоты Z распределенными по области определенной координатами X и Y. ЦМР – средство цифрового представления рельефа земной поверхности. сбор по стереопарам снимков отличается трудоемкостью и требует специфического программного обеспечения но в то же время позволяет обеспечить желаемую степень детальности представления земной поверхности.
2156. Моделирование освещения 125.57 KB
Для наблюдателя находящегося в любой точке яркость точки которую он видит будет выражаться следующим образом. где V яркость для ч б; E – альбедо коэффициент отражения поверхности. По сравнению с методом Ламберта эта модель уменьшает яркость точек на которые мы смотрим под углом 90 и увеличивает яркость тех точек на которые мы смотрим вскользь Применение законов освещения при синтезе объекта изображения. 7 Рассчитывается яркость в одной точке например в центре тяжести для выпуклых многоугольников грани по Ламберту и...
8080. Троичное моделирование 18.3 KB
Троичное моделирование Троичное моделирование широко используется для выявления состязаний сигналов которые могут иметь место в схеме. Моделирование входного набора происходит в 2 этапа. Пример: провести троичное логическое моделирование методом Э. Троичное моделирование с нарастающей неопределенностью В данном алгоритме для каждого лта указывается максимальное и минимальное значение задержки т.
6675. Имитационное моделирование 56.71 KB
Этот процесс состоит из двух больших этапов: разработки модели и анализа разработанной модели. Моделирование позволяет исследовать суть сложных процессов и явлений с помощью экспериментов не с реальной системой а с ее моделью. В области создания новых систем моделирование является средством исследования важных характеристик будущей системы на самых ранних стадиях ее разработки.
5651. Моделирование производственной системы 391.61 KB
Компьютер задействован в управлении технологическим оборудованием. Для контроля состояния оборудования каждые 20 мин запускается одна из трех типов задач. Через каждые 5 мин работы процессора каждая задача выводит результаты работы в базу данных
4640. МОДЕЛИРОВАНИЕ ЦИФРОВЫХ УЗЛОВ 568.49 KB
На кристаллах современных БИС можно поместить множество функциональных блоков старых ЭВМ вместе с цепями межблочных соединений. Разработка и тестирование таких кристаллов возможно только методами математического моделирования с использованием мощных компьютеров.
6206. Моделирование в научных исследованиях 15.78 KB
Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако методология моделирования долгое время развивалась независимо отдельными науками. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.
3708. Моделирование с использованием сплайнов 465.08 KB
Они же и определяют степень кривизны сегментов сплайна прилегающих к этим вершинам. Сегмент – это часть линии сплайна между двумя соседними вершинами. В 3ds Mx используются четыре типа вершин: Corner Угловая – вершина примыкающие сегменты к которой не имеют кривизны; Smooth Сглаженная вершина через которую кривая сплайна проводится с изгибом и имеет одинаковую кривизну сегментов с обеих сторон от нее; Bezier Безье вершина подобная сглаженной но позволяющая управлять кривизной сегментов сплайна с обеих сторон от вершины....
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!