Настройка оборудования и программного обеспечения

Часы из весов программа mcs 51. Микроконтроллеры MCS–51

Основой микроконтроллера (см. рис. 1) является 8–ми битовое Арифметическо–Логическое устройство (АЛУ). Память МК имеет Гарвардскую архитектуру, т.е. логически разделена: на память программ – ПП (внутреннюю или внешнюю), адресуемую 16–ти битовым счетчиком команд (СК) и память данных – внутреннюю (Резидентная память данных – РПД) 128 (или 256) байт, а также внешнюю (Внешняя память данных – ВПД) до 64 Кбайт. Физически память программ реализована на ПЗУ (доступна только по чтению), а память данных – на ОЗУ (возможна запись и чтение данных).

Прием и выдача внешних сигналов осуществляется через 4 восьмибитовых порта Р0..Р3. При обращении к внешней памяти программ (ВПП) или памяти данных (ВПД) порты Р0 и Р2 используются как мультиплексированная внешняя шина Адрес/Данные. Линии порта Р3 могут выполнять также альтернативные функции (см. табл. 1).

16–ти битовый регистр DPTR формирует адрес ВПД или базовый адрес Памяти программ в команде преобразования Аккумулятора. Регистр DPTR может также использоваться как два независимых 8–ми битовых регистра (DPL и DPH) для хранения операндов.

8–ми битовый внутренний регистр команд (РК) принимает код выполняемой команды; этот код дешифрируется схемой управления, которая генерирует управляющие сигналы (см. рис. 1).

Обращение к регистрам специальных функций – РСФ (SFR – на рис. 1 они обведены пунктирной линией) возможно только с использованием прямой байтовой адресации в диапазоне адресов от 128 (80h) и более.


Резидентная память данных (РПД) в первых моделях микроконтроллеров семейства MCS–51 имела объем 128 байт. Младшие 32 байта РПД являются одновременно и регистрами общего назначения – РОН (4 банка по 8 РОНов). Программа может обратиться к одному из 8–ми РОНов активного банка. Выбор активного банка РОНов осуществляется программированием двух бит в регистре состояния процессора – PSW.


Таблица 1 – Назначение выводов MCS–51

№ выв. Обозначение Назначение
1..8 Р1 8–ми битовый квазидвунаправленный порт ввода/вывода
9 RST

Сигнал сброса (активный уровень – высокий);

Сигнал RST обнуляет: PC и большинство Регистров Специальных Функций (SFR), запрещая все прерывания и работу таймеров; выбирает Банк РОНов 0; записывает в порты Р0_Р3 "все единицы", подготавливая их на ввод; записывает код 07H в указатель стека (SP);

10..17

8–ми битовый квазидвунаправленный порт ввода/вывода; после записи в соответствующий разряд "1" – выполняет дополнительные (альтернативные) функции:

Вход последовательного порта – RxD;

Выход последовательного порта – TxD;

Вход внешнего прерывания 0 – ~INT0;

Вход внешнего прерывания 1 – ~INT1;

Вход таймера/счетчика 0 – Т0;

Вход таймера/счетчика 1 – Т1;

Выход строб. сигнала при записи в ВПД – ~ WR;

Выход строб. сигнала при чтении из ВПД – ~ RD;

18, 19 X1, X2 Выводы для подключения кварцевого резонатора или LC–контура;
20 GND Общий вывод;
21..28 P2 8–ми битовый квазидвунаправленный порт ввода /вывода; или выход адреса A в режиме работы с внешней памятью (ВПП или ВПД);
29 PME Строб чтения Внешней Памяти Программ, выда–ется только при обращении к внешнему ПЗУ;
30 ALE Строб адреса Внешней памяти (ВПП или ВПД);
31 ЕА Отключение РПП, уровень "0" на этом входе пе–реводит МК на выборку команд только из ВПП ;
39..32 Р0 8–ми битовый двунаправленный порт ввода/ вывода; при обращении к Внешней Памяти выдает адреса A (которые записываются во внешний регистр по сигналу ALE), а затем обменивается байтом синхронно с сигналом ~PME (для команд) или ~WR,~RD (для данных в ВПД), при обращении к Внешней Памяти в регистр порта Р0 записываются все единицы, разрушая хранимую там информацию;
40 Ucc Вывод напряжения питания

Переключение банков РОНов упрощает выполнение подпрограмм и обработку прерываний, т.к. не нужно пересылать в стек содержимое РОНов основной программы при вызове подпрограммы (достаточно в подпрограмме перейти в другой активный банк РОНов).

Обращение к РПД возможно с использованием косвенной или прямой байтовой адресации (прямая байтовая адресация позволяет обратиться только к первым 128-ми байтам РПД).

Расширенная область РПД (у микроконтроллеров семейства MCS-52 и последующих семейств) с адреса 128 (80h) до 255 (FFh) может адресоваться только с использованием косвенного метода адресации.

Таблица 2 – Блок Регистров Специальных Функций (s f r)

Мнемо–код Наименование
0E0h * ACC Аккумулятор
0F0h * B Регистр расширитель аккумулятора
0D0h * PSW Слово состояния процессора
0B0h * P3 Порт 3
0A0h * P2 Порт 2
90h * P1 Порт 1
80h * P0 Порт 0
0B8h * IP Регистр приоритетов прерываний
0A8h * IE Регистр маски прерываний
99h SBUF Буфер последовательного приемо–передатчика
98h * SCON Регистр управления/статуса последовательного порта
89h TMOD Регистр режимов таймеров/счетчиков
88h * TCON Регистр управления/статуса таймеров/счетчиков
8Dh TH1 Таймер 1 (старший байт)
8Bh TL1 Таймер 1 (младший байт)
8Ch TH0 Таймер 0 (старший байт)
8Ah TL0 Таймер 0 (младший байт)
83h DPH Регистр–указатель данных (DPTR) (старший байт)
82h DPL Регистр–указатель данных (DPTR) (младший байт)
81h SP Регистр–указатель стека
87h PCON Регистр управления мощностью потребления

2. ПРОГРАММНАЯ МОДЕЛЬ MCS–51


ТИПЫ КОМАНД MCS–51

Почти половина команд выполняется за 1 машинный цикл (МЦ). При частоте кварцевого генератора 12 МГц время выполнения такой команды – 1 мкс. Остальные команды выполняются за 2 машинных цикла, т.е. за 2мкс. Только команды умножения (MUL) и деления (DIV) выполняются за 4 машинных цикла.

За время одного машинного цикла происходит два обращения к Памяти Программ (внутренней или внешней) для считывания двух байтов команды или одно обращение к Внешней Памяти Данных (ВПД).

3. МЕТОДЫ (СПОСОБЫ) АДРЕСАЦИИ MCS–51

1. РЕГИСТРОВАЯ АДРЕСАЦИЯ – 8–ми битовый операнд находится в РОНе выбранного (активного) банка регистров;

2 НЕПОСРЕДСТВЕННАЯ АДРЕСАЦИЯ (обозначается знаком – #) – операнд находится во втором (а для 16–ти битового операнда и в третьем) байте команды;

3 КОСВЕННАЯ АДРЕСАЦИЯ (обозначается знаком – @) – операнд находится в Памяти Данных (РПД или ВПД), а адрес ячейки памяти содержится в одном из РОНов косвенной адресации (R0 или R1); в командах PUSH и POP адрес содержится в указателе стека SP; регистр DPTR может содержать адрес ВПД объемом до 64К;

4 ПРЯМАЯ БАЙТОВАЯ АДРЕСАЦИЯ – (dir) – используется для обращения к ячейкам РПД (адреса 00h…7Fh) и к регистрам специальных функций SFR (адреса 80h…0FFh);

5 ПРЯМАЯ БИТОВАЯ АДРЕСАЦИЯ – (bit) – используется для обращения к отдельно адресуемым 128 битам, расположенным в ячейках РПД по адресам 20H…2FH и к отдельно адресуемым битам регистров специальных функций (см. табл. 3 и программную модель);

6 КОСВЕННАЯ ИНДЕКСНАЯ АДРЕСАЦИЯ (обозначается знаком – @)– упрощает просмотр таблиц в Памяти Программ, адрес ПП определяется по сумме базового регистра (PC или DPTR) и индексного регистра (Аккумулятора);

7 НЕЯВНАЯ (ВСТРОЕННАЯ) АДРЕСАЦИЯ – в коде команды содержится неявное (по умолчанию) указание на один из операндов (чаще всего на Аккумулятор).

4. ФОРМАТ СЛОВА СОСТОЯНИЯ ПРОЦЕССОРА (PSW)

C – флаг переноса (CARY) или заема, выполняет также функции "булевого Аккумулятора" в командах, оперирующих с битами;

AC – флаг вспомогательного (дополнительного) переноса – устанавливается в "1", если в команде сложения (ADD, ADDC) был перенос из младшей тетрады в старшую (т.е. из 3-го бита в 4-й бит);

F0 – флаг пользователя – устанавливается, сбрасывается и проверяется программно;

RS1 RS0 Банк Адрес (dir)
0 0 0 00h..07h
0 1 1 08h..0Fh
1 0 2 10h..17h
1 1 3 18h..1Fh

RS1,RS0 – Выбор банка регистров:

OV – Флаг арифметического переполнения; его значение определяется операцией "Исключающее ИЛИ" сигналов входного и выходного переносов старшего разряда АЛУ; единичное значение этого флага указывает на то, что результат арифметической операции в дополнительном коде вышел за допустимые пределы: –128…+127; при выполнении операции деления флаг OV сбрасывается, а в случае деления на ноль – устанавливается; при умножении флаг OV устанавливается, если результат больше 255 (0FFH);

Разряд PSW – Резервный, содержит триггер, доступный по записи или чтению;

P – флаг паритета – является дополнением количества единичных битов в аккумуляторе до четного; формируется комбинационной схемой (программно доcтупен только по чтению).

В микроконтроллерах MCS-51 отсутствует флаг "Z". Но в командах условного перехода (JZ, JNZ) проверяется комбинационной схемой текущее (нулевое или ненулевое) содержимое Аккумулятора.

Все команды пересылок и обмена операндов могут осуществляться через Аккумулятор (см. рис. 3). Причем пересылки из/в Внешней Памяти (Памяти Программ или Памяти Данных) могут осуществляться только через Аккумулятор.

Большинство пересылок могут осуществляться также через прямоадресуемый байт (dir). Существуют даже пересылки dir – dir (см. рис. 3).

Отсутствующие пересылки из РОНа в РОН могут быть реализованы как пересылки из РОНа в прямоадресуемый байт dir (с учетом того, что РОНы расположены в начальной области Резидентной Памяти Данных, ячейки которой могут адресоваться как dir).

Команды обмена XCH позволяют пересылать байты без разрушения обоих операндов.

Арифметические команды выполняются только в Аккумуляторе. Поэтому первый операнд необходимо предварительно поместить в Аккумулятор и потом сложить или вычесть второй операнд. Результат помещается в Аккумулятор.


Команда вычитание SUBB выполняется только с заемом (т.е. из результата вычитается и флаг Сary). Поэтому для выполнения команды вычитания без заема необходимо предварительно выполнить команду очистки флага С (CLRC).

Команда умножения однобайтовых операндов – MULAB – размещает двухбайтовый (16 бит) результат: младший байт – в Аккумулятор, старший байт – в регистр В.

Результат выполнения команды деления однобайтовых операндов – DIVAB – помещается: частное – а Аккумулятор, остаток – в регистр В.

Арифметическая команда INC добавляет к выбранному операнду единицу. Арифметическая команда DEC вычитает из выбранного операнда единицу. Команда десятичной коррекции Аккумулятора (DAA) помогает складывать двоично-десятичные числа (BCD-числа) без перевода их в шестнадцатеричный формат (hex-формат). Исходные операнды должны быть обязательно в BCD-формате, т.е. в каждой тетраде одного байта находятся только числа от 0 до 9 (там не могут быть шестнадцатеричные числа: A, B, C, D, E, F). Поэтому в одном байте могут находиться числа от 00 до 99 для упакованных BCD-чисел или числа от 0 до 9 для неупакованных BCD-чисел.

Команда DA A – десятичной коррекции выполняет действия над содержимым Аккумулятора после сложения BCD-чисел в процессоре (числа складывались по законам шестнадцатеричной арифметики) следующим образом (см. пример):

· если содержимое младшей тетрады Аккумулятора больше 9 или установлен флаг вспомогательного переноса (AС = 1), то к содержимому Аккумулятора добавляется 6 (т.е. недостающие шесть цифр в hex-формате);

· если после этого содержимое старшей тетрады Аккумулятора больше 9 или установлен флаг C, то число 6 добавляется к старшей тетраде Аккумулятора.

Команду десятичной коррекции DA A не применяют после команды инкремента (INC), потому что команда инкремента не влияет (не изменяет) на флаги С и АС.

Логические команды:

Логическое "И" – ANL,

Логическое "ИЛИ" – ORL,

Логическая команда "ИСКЛЮЧАЮЩЕЕ ИЛИ" – XRL– выполняются в Аккумуляторе (как и арифметические), но имеется возможность выполнить логические команды также и в прямоадресуемом байте (dir). При этом второй операнд может быть:

В Аккумуляторе или

Непосредственный операнд в команде.

Команды вращения (RR A, RL A) и команды вращения через флаг CARY (RRC A, RLC A) циклически сдвигают содержимое Аккумулятора на 1 бит.ресылки битовых операндов осуществляются только через флаг С.

Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Все функции микроЭВМ реализуются с помощью единственной микросхемы. В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд , большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм — производителей (таких как Intel, Dallas, Atmel, Philips и т.д.) без переделки принципиальной схемы устройства и программы .

Рисунок 1. Структурная схема контроллера К1830ВЕ751

Структурная схема контроллера представлена на рисунке 1. и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. Рассмотрим подробнее назначение каждого блока. По такой схеме построены практически все представители семейства MCS-51 . Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов). Система команд всех контроллеров семейства MCS-51 содержит 111 базовых команд с форматом 1, 2 или 3 байта и не изменяется при переходе от одной микросхемы к другой. Это обеспечивает прекрасную переносимость программ с одной микросхемы на другую.

Блок управления и синхронизации

Блок управления и синхронизации (Timing and Control) предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы.В состав блока управления входят:

  • устройство формирования временных интервалов,
  • логика ввода-вывода,
  • регистр команд,
  • регистр управления потреблением электроэнергии,
  • дешифратор команд, логика управления ЭВМ.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Тогда длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON ) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Вместе со статьей "Архитектура микроконтроллеров MCS-51" читают:


http://сайт/MCS51/tablms.php


http://сайт/MCS51/SysInstr.php


http://сайт/MCS51/port.php

УДК 681.5, 681.325.5 (075.8)

ББК 32.973.202-018.2 я 73

Щербина А. Н. Вычислительные машины, системы и сети. Микроконтроллеры и микропроцессоры в системах управления: у чеб. пособие / А.Н. Щербина, П.А. Нечаев- СПб.: Из-во Политехн. ун-та, 2012.-226 с.

Соответствует содержанию государственного образовательного стандарта направлений подготовки и специальностей в области управления в технических системах, электроэнергетики и электротехники и содержанию примерной учебной программы дисциплины «Вычислительные машины, системы и сети».

Рассмотрены фундаментальные вопросы логической организации микропроцессорных систем на примере базовой архитектуры микроконтроллерного семейства MCS-51 фирмы Intel. Описана технология программирования микроконтроллеров на языках Ассемблер и СИ.

Может быть полезным для студентов и преподавателей высших технических заведений, специалистов по автоматизации технологических процессов и производственного оборудования, а также для инженеров-проектировщиков микропроцессорных систем.

Также соответствует содержанию государственного образовательного стандарта дисциплин «Микроконтроллеры и микропроцессоры в системах управления» и «Электронные устройства автоматики» бакалаврской, инженерной и магистерской подготовки по направлению 140400 «Электроэнергетика и электротехника».

Печатается по решению редакционно-издательского совета

Санкт-Петербургского государственного политехнического университета.

© Щербина А. Н., Нечаев П. А., 2012

© Санкт-Петербургский государственный

политехнический университет, 2012

ISBN 978-5-7422-3553-8


Введение.. 7

Глава 1. Архитектура семейства MCS51. 10

1.1 Общие характеристики 10

1.2 Структурная схема 11



1.3 Назначение выводов микроконтроллера 8051 15

1.4 Организация памяти 17

1.4.1 Память программ (ПЗУ) 18

1.4.2 Память данных (ОЗУ) 19

1.4.3 Регистры специальных функций. 20

1.4.4 Регистр флагов (PSW) 23

1.5 Устройство управления и синхронизации 26

1.6 Организация портов ввода-вывода 27

1.6.1 Общие сведения. 27

1.6.2 Альтернативные функции. 27

1.7. Таймеры / счетчики микроконтроллеров семейства 8051. 28

1.7.1. Структура таймеров-счетчиков. 28

1.7.2 Режимы работы таймеров-счетчиков. 30

1.8. Последовательный порт 32

1.8.1. Структура последовательного порта. 32

1.8.2. Регистр управления/статуса приемопередатчика SCON.. 34

1.8.3. Регистр управления мощностью PCON.. 36

1.9. Система прерываний 37

1.9.1. Структура системы прерываний. 37

1.9.2 Выполнение подпрограммы прерывания. 40

Глава 2. Особенности микроконтроллера 80C51GB.. 42

2.1 Функциональные особенности 42

2.2 Порты I/O P0-P5 43

2.2.1 Функционирование портов ввода-вывода. 43

2.2.2 Запись в порт.. 46

2.3 Особенности системы прерываний 8XC51GB.. 49

Разрешение/запрещение прерываний. 50

Управление приоритетами прерываний. 51

Внешние прерывания. 54

2.3. Узел АЦП 56

2.4. Аппаратный сторожевой таймер 61

2.5. Обнаружение сбоя тактового генератора 63

2.6. Матрица программируемых счётчиков РСА 64

2.6.1. Структура PCA.. 64

2.6.2. Регистр режима счётчика РСА (CMOD) 66

2.6.3. Регистр управления счётчика РСА (CON) 67

2.6.4. Модули сравнения/фиксации. 68

2.7. Расширенный последовательный порт 76

2.8. Таймеры/счетчики 79

Расположение выводов микроконтроллеров группы 8XC51GB.. 86

Глава 3. Программирование MK 8051GB.. 89

3.1. Программная модель 89

3.2 Типы данных 93

3.3 Способы адресации данных 93

3.4 Система команд 95

3.4.1 Общая характеристика. 95

3.4.2 Типы команд. 96

3.4.3 Типы операндов. 97

3.4.4 Команды пересылки данных микроконтроллера. 98

3.4.5 Команды арифметических операций 8051. 101

3.4.6 Команды логических операций микроконтроллера 8051. 104

3.4.7 Команды операций над битами микроконтроллера 8051. 106

3.5 Отладка программ 111

Глава 4. Язык программирования ASM-51. 112

4.2 Запись текста программы 113

4.3 Алфавит языка. 114

4.4 Идентификаторы. 115

4.5 Числа 117

4.6 Директивы 118

4.7 Реализация подпрограмм на языке ASM51 122

4.7.1 Структура подпрограммы-процедуры на языке ASM51. 122

4.7.2 Передача переменных-параметров в подпрограмму. 123

4.7.3 Реализация подпрограмм-функций на языке ASM51. 123

4.7.4 Реализация подпрограмм обработки прерываний на языке ASM51. 124

4.8 Структурное программирование на языке ассемблера. 125

4.9 Особенности трансляции многомодульных программ.. 126

4.10 Использование сегментов 128

4.10.1 Разбиение памяти МК на сегменты.. 128

4.10.2 Абсолютные сегменты памяти. 129

4.10.2 Перемещаемые сегменты памяти. 131

Глава 5. Язык программирования С-51. 134

5.1 Общая характеристика языка 134

5.3 Структура программ С-51 136

5.3. Элементы языка программирования С-51 138

5.3.1. Символы.. 138

5.3.2. Лексические единицы, разделители и использование пробелов. 141

5.3.3 Идентификаторы.. 142

5.3.4 Ключевые слова. 143

5.3.5 Константы.. 143

5.4. Выражения в операторах языка 146

программирования C-51 146

5.5. Приоритеты выполнения операций 148

5.6. Операторы языка программирования C-51 149

5.6.1. Операторы объявления. 150

5.6.2 Исполняемые операторы.. 150

5.6.3 Оператор присваивания. 151

5.6.4 Условный оператор. 151

5.6.5 Структурный оператор {}. 152

5.6.6 Оператор цикла for. 152

5.6.7 Оператор цикла с проверкой условия до тела цикла while. 153

5.6.8 Оператор цикла с проверкой условия после тела цикла do while. 154

5.6.9 Оператор break. 155

5.6.10 Оператор continue. 155

5.6.11 Оператор выбора switch. 155

5.6.12 Оператор безусловного перехода goto. 157

5.6.13 Оператор выражение. 158

5.6.14 Оператор возврата из подпрограммы return. 158

5.6.15 Пустой оператор. 158

5.7. Объявление переменных в языке программирования C-51. 159

5.7.1. Объявление переменной. 159

5.7.3 Целые типы данных. 161

5.7.4 Числа с плавающей запятой. 162

5.7.5 Переменные перечислимого типа. 162

5.7.6. Объявление массивов в языке программирования C-51. 164

5.7.7. Структуры.. 165

5.7.8. Объединения (смеси) 166

5.8. Использование указателей в языке C-51 167

5.8.1. Объявление указателей. 167

5.8.2. Нетипизированные указатели. 168

5.8.3. Память зависимые указатели. 169

5.9. Объявление новых типов переменных 169

5.10. Инициализация данных 170

5.11. Использование подпрограмм в языке программирования С-51. 170

5.11.1. Определение подпрограмм.. 171

5.11.2. Параметры подпрограмм.. 173

5.11.3. Предварительное объявление подпрограмм.. 174

5.11.4 Вызов подпрограмм.. 176

5.11.5 Рекурсивный вызов подпрограмм.. 176

5.11.6 Подпрограммы обработки прерываний. 177

5.11.7 Области действия переменных и подпрограмм.. 178

5.12. Многомодульные программы 179

Глава 6. Подготовка программ в интегрированной среде разработки Keil μVision2. 182

6.1 Создание проекта на языке ASM-51 182

6.2 Пример создания проекта на языке C для учебного контроллера в интегрированной среде разработки Keil μVision2 188

Глава 7. Описание учебного контроллера.. 199

7.1. Структура контроллера 199

7.2. Адресное пространство 200

7.2.1. Распределение памяти. 200

7.2.2 Внешняя память. 201

7.2.3. Внутренняя память данных. 202

7.3. Распределение портов ввода-вывода 202

7.4. Последовательный порт………………………………...203

7.5. Работа с ЖКИ 205

7.6. Панели контроллера…………………………………………………213

ПРИЛОЖЕНИЕ П2 СТРУКТУРА ОТЧЁТА О ЛАБРОРАТОРНОЙ РАБОТЕ……..217

Приложение П3 Коды машинных команд. 217

Список литературы... 224


Введение

В освоении специальностей, связанных с автоматизацией технологических процессов и производств, изучение микроконтроллеров является одним из важных разделов.

В мире происходит непрерывное развитие и появление все новых и новых 16- и 32-разрядных микроконтроллеров и микропроцессоров, но наибольшая доля мирового микропроцессорного рынка и по сей день остается за 8-разрядными устройствами. По всем прогнозам аналитических компаний на ближайшее время, лидирующее положение 8-разрядных микроконтроллеров на мировом рынке сохранится.

В настоящее время среди всех 8-разрядных микроконтроллеров семейство MCS-51 является несомненным лидером по количеству разновидностей и количеству компаний, выпускающих его модификации. Оно получило свое название от первого представителя этого семейства - микроконтроллера 8051. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке.

Достоинства семейства MCS-51:

· архитектура, являющаяся стандартом де-факто;

· чрезвычайная широта семейства и разнообразие возможностей;

· наличие высокопроизводительных и расширенных версий процессоров;

· значительное число свободно доступных программных и аппаратурных наработок;

· легкость аппаратного программирования, в т. ч. и внутрисхемного;

· дешевизна и доступность базовых чипов;

· наличие специализированных версий контроллеров для особых условий применения

· наличие версий контроллеров с пониженным уровнем электромагнитных помех;

· широкая известность среди разработчиков старшего поколения, как в мире, так и в странах СНГ;

· поддержка архитектуры ведущими учебными заведениями мира.

И, наконец, главное преимущество: освоив базовый чип семейства, легко начнеть работать с такими вычислительными «монстрами», как микроконтроллеры Cygnal, Dallas Semiconductor, Analog Devices, Texas Instruments.

В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. На сегодняшний день существует более 200 модификаций микроконтроллеров семейства 8051, выпускаемых почти 20-ю компаниями. Каждый год появляются все новые варианты представителей этого семейства.

Основными направлениями развития являются:

· увеличение быстродействия (повышение тактовой частоты и переработка архитектуры);

· снижение напряжения питания и энергопотребления;

· увеличение объема ОЗУ и FLASH памяти на кристалле с возможностью внутрисхемного программирования;

· введение в состав периферии микроконтроллера сложных устройств типа системы управления приводами, CAN и USB интерфейсов и т.п.

Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд. Большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм - производителей без переделки принципиальной схемы устройства и программы.

Основными производителями разновидностей 51-го семейства в мире являются фирмы Philips, Siemens, Intel, Atmel, Dallas, Temic, Oki, AMD, MHS, Gold Star, Winbond, Silicon Systems и ряд других.

Характеристики аналогов микроконтроллеров семейства MCS-51 (Intel 8XC51FA, 8XC51GB, 80С152) с расширенными возможностями приведены в табл. В.1.

Таблица В.1

ОЗУ ПЗУ РСА АЦП WDT T/C Послед. Каналы Особенности
Atmel: AT89C2051
- - - - UART Flash 2 Кб
AT89C4051 - - - - UART Flash 4 Кб
AT89S4D12 128K - - - UART, SPI Flash 4 Кб
DALLAS Semiconductor: DS5000FP
- - - + UART Bootstrap loader
DS5001FP - - - + UART Bootstrap loader
DS8xC520 16K - - + 2xUART 2 DPTR
SIEMENS: C505C
16K - + + UART, CAN 8 DPTR
C515C 64K - + + UART+ SSC+CAN 4 ШИМ, 8 DPTR
Philips: *89C51RA+
- + - + UART 2 DPTR, 4 ур. прер., clock out, Flash 8K
P51XAG1x 8K - - + 2 UART
Intel: 8xC51RA
8K - + + UART 4 уровня IRQ, clock out
8XC196KC 64K 16K - + - UART 3 ШИМ
80C196KB 64K 8K - + - UART ШИМ

Глава 1. Архитектура семейства MCS51

8-разрядные однокристальные микроконтроллеры семейства MCS-51 приобрели большую популярность у разработчиков микропроцессорных систем контроля благодаря удачно спроектированной архитектуре. Архитектура микроконтроллера – это совокупность внутренних и внешних программно-доступных аппаратных ресурсов и системы команд. Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Микроконтроллеры, выполняющие все функции микроЭВМ с помощью единственной микросхемы, получили название однокристальных ЭВМ (ОЭВМ).

Фирма Intel выпустила около 50 моделей на базе операционного ядра микроконтроллера Intel 8051. Одновременно многие другие фирмы, такие как Atmel, Philips, начали производство своих микроконтроллеров, разработанных в стандарте MCS-51.

Общие характеристики

Основные характеристики семейства:

· 8-разрядный центральный процессор (ЦП), ориентированный на управление исполнительными устройствами;

· ЦП имеет встроенную схему 8-разрядного аппаратного умножения и деления чисел;

· наличие в наборе команд большого количества операций для работы с прямоадресуемыми битами даёт возможность говорить о процессоре для работы с битовыми данными (булевом процессоре);

· внутренняя (расположенная на кристалле) память программ масочного или репрограммируемого типа, имеющая для различных кристаллов объём от 4 до 32 Кб, в некоторых версиях она отсутствует;

· не менее чем 128 байтное резидентное ОЗУ данных, которое используется для организации, регистровых банков, стека и хранения пользовательских данных;

· не менее 32-х двунаправленных интерфейсных линий (портов), индивидуально настраиваемых на ввод или вывод информации;

· два 16-битных многорежимных счетчика/таймера, используемых для подсчёта внешних событий, организации временных задержек и тактирования коммуникационного порта;

· двунаправленный дуплексный асинхронный приемопередатчик (UART), предназначенный для организации каналов связи между микроконтроллером и внешними устройствами с широким диапазоном скоростей передачи информации. Имеются средства для аппаратно-программного объединения микроконтроллеров в связанную систему;

· двухуровневая приоритетная система прерываний, поддерживающая не менее 5 векторов прерываний от 4-х внутренних и 2-х внешних источников событий;

· встроенный тактовый генератор.

Структурная схема

Структурная схема контроллера представлена на рис.1.1 и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. По такой схеме построены практически все представители семейства MCS-51. Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов).

Блок управления и синхронизации (Timing and Control) - предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы. В состав блока управления входят:

устройство формирования временных интервалов;

логика ввода-вывода;

регистр команд;

регистр управления потреблением электроэнергии;

дешифратор команд, логика управления ЭВМ.

Рис. 1.1. Структурная схема контроллера I8051.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью дешифратора команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Арифметико-логическое устройство (ALU) представляет собой параллельное восьмиразрядное устройство, обеспечивающее выполнение арифметических и логических операций. АЛУ состоит из:

регистров аккумулятора, регистров временного хранения TMP1 и TMP2;

ПЗУ констант;

сумматора;

дополнительного регистра (регистра В);

аккумулятора (ACC);

регистра состояния программ (PSW).

Регистр аккумулятор и регистры временного хранения - восьмиразрядные регистры, предназначенные для приема и хранения операндов на время выполнения операций над ними. Эти регистры программно не доступны.

ПЗУ констант обеспечивает выработку корректирующего кода при двоично-десятичном представлении данных, кода маски при битовых операциях и кода констант.

Параллельный восьмиразрядный сумматор представляет собой схему комбинационного типа с последовательным переносом, предназначенную для выполнения арифметических операций сложения, вычитания и логических операций сложения, умножения, неравнозначности и тождественности.

Регистр B - восьмиразрядный регистр, используемый во время операций умножения и деления. Для других инструкций он может рассматриваться как дополнительный сверхоперативный регистр.

Аккумулятор - восьмиразрядный регистр, предназначенный для приема и хранения результата, полученного при выполнении арифметико-логических операций или операций сдвига

Блок последовательного интерфейса и прерываний (ПИП) предназначен для организации ввода - вывода последовательных потоков информации и организации системы прерывания программ. В состав блока входят:

буфер ПИП;

логика управления;

регистр управления;

буфер передатчика;

буфер приемника;

приемопередатчик последовательного порта;

регистр приоритетов прерываний;

регистр разрешения прерываний;

логика обработки флагов прерываний и схема выработки вектора.

Счетчик команд (Program Counter) предназначен для формирования текущего 16-разрядного адреса внутренней памяти программ и 8/16-разрядного адреса внешней памяти программ. В состав счетчика команд входят 16-разрядные буфер РС, регистр РС и схема инкремента (увеличения содержимого на 1).

Память данных (RAM) предназначена для временного хранения информации, используемой в процессе выполнения программы.

Порты P0, P1, P2, P3 являются квазидвунаправленными портами ввода - вывода и предназначены для обеспечения обмена информацией ОЭВМ с внешними устройствами, образуя 32 линии ввода- вывода.

Регистр состояния программы (PSW) предназначен для хранения информации о состоянии АЛУ при выполнении программы.

Память программ (EPROM) предназначена для хранения программ и представляет собой постоянное запоминающее устройство (ПЗУ). В разных микросхемах применяются масочные, стираемые ультрафиолетовым излучением или FLASH ПЗУ.

Регистр указателя данных (DPTR) предназначен для хранения 16 - разрядного адреса внешней памяти данных.

Указатель стека (SP) представляет собой восьмиразрядный регистр, предназначенный для организации особой области памяти данных (стека), в которой можно временно сохранить любую ячейку памяти.

1.3 Назначение выводов микроконтроллера 8051 (рис. 1.2)

· U ss - потенциал общего провода ("земли");

· U cc - основное напряжение питания +5 В;

· X1,X2 - выводы для подключения кварцевого резонатора;

· RST - вход общего сброса микроконтроллера;

· PSEN - разрешение внешней памяти программ, выдается только при обращении к внешнему ПЗУ;

· ALE - строб адреса внешней памяти;

· ЕА - отключение внутренней программной память; уровень 0 на этом входе заставляет микроконтроллер выполнять программу только из внешнего ПЗУ; игнорируя внутреннее(если последнее имеется);

Рис. 1.2. Назначение выводов 8051.

· P1 - восьмибитный квазидвунаправленный порт ввода/вывода, каждый разряд порта может быть запрограммирован как на ввод, так и на вывод информации, независимо от состояния других разрядов;

· P2 - восьмибитный квазидвунаправленный порт, аналогичный Р1, выводы этого порта используются для выдачи адресной информации при обращении к внешней памяти программ или данных (если используется 16-битовая адресация последней). Кроме того, выводы порта используются при программировании для ввода в микроконтроллер старших разрядов адреса;

· РЗ - восьмибитный квазидвунаправленный порт, аналогичный Р1, выводы этого порта могут выполнять ряд альтернативных функций, которые используются при работе таймеров, порта последовательного ввода-вывода, контроллера прерываний, и внешней памяти программ и данных;

· P0 - мультиплексируемый восьмибитный двунаправленный порт ввода-вывода информации, через этот порт в разные моменты времени выводятся младший байт адреса и данные.

Организация памяти

Вся серия MCS-51 имеет гарвардскую архитектуру, то есть раздельные адресные пространства памяти программ и данных. Структура памяти изображена на рис. 1.3.

Объем внутренней (резидентной) памяти программ (ROM, EPROM или OTP ROM), располагаемой на кристалле, в зависимости от типа микросхемы может составлять 0 (ROMless), 4К (базовый кристалл), 8К, 16К или 32К. При необходимости пользователь может расширять память программ установкой внешнего ПЗУ. Доступ к внутреннему или внешнему ПЗУ определяется значением сигнала на выводе ЕА (External Access):

EA=V cc (напряжение питания) - доступ к внутреннему ПЗУ;

EA=V ss (потенциал земли) - доступ к внешнему ПЗУ.

Для кристаллов без ПЗУ(ROMless) вывод ЕА должен быть постоянно подключен к V ss .

Рис. 1.3. Организация памяти семейства MCS-51

Строб чтения внешнего ПЗУ - (Program Store Enable) генерируется при обращении к внешней памяти программ и является неактивным во время обращения к ПЗУ, расположенному на кристалле. Область нижних адресов памяти программ используется системой прерываний. Архитектура базовой микросхемы 8051обеспечивает поддержку пяти источников прерываний:

· двух внешних прерываний;

· двух прерываний от таймеров;

· прерывания от последовательного порта.

На рис. 1.4 изображена карта нижней области программной памяти.

Рис. 1.4. Карта нижней области программной памяти

Память программ (ПЗУ)

У микроконтроллеров семейства 8051, память программ и память данных являются самостоятельными и независимыми друг от друга устройствами, адресуемыми различными командами и управляющими сигналами.

Объем встроенной памяти программ, расположенной на кристалле микроконтроллера 8051 , равен 4 Кбайт (в семействе до 32). При обращении к внешней памяти программ все микроконтроллеры семейства 8051 всегда используют 16-разрадный адрес, что обеспечивает им доступ к 64 Кбайт ПЗУ. Микроконтроллер обращается к программной памяти при чтении кода операции и операндов (используя счетчик команд PC), а также при выполнении команд копирования байта из памяти программ в аккумулятор. При выполнении команд копирования данных адресация ячейки памяти программ, из которой будут прочитаны данные, может осуществляться с использованием как счетчика PC, так и специального двухбайтового регистра-указателя данных DPTR.

Память данных (ОЗУ)

Объем расположенной на кристалле памяти данных - 128 байт. Объем внешней памяти данных может достигать 64 Кбайт. Первые 32 байта организованы в четыре банка регистров общего назначения, обозначаемых соответственно банк 0 - банк 3. Каждый из них состоит из восьми регистров R0–R7. В любой момент программе доступен, при регистровой адресации, только один банк регистров, номер которого содержится в третьем и четвертом битах слова состояния программы PSW .

Адреса битовой области памяти микроконтроллера 8051

Таблица 1.1

Адрес байта (Hex) Адреса битов по разрядам
D7 D6 D5 D4 D3 D2 D1 D0
2F 7F 7E 7D 7C 7B 7A
2E
2D 6F 6E 6D 6C 6B 6A
2C
2B 5F 5E 5D 5C 5B 5A
2A
4F 4E 4D 4C 4B 4A
3F 3E 3D 3C 3B 3A
2F 2E 2D 2C 2B 2A
1F 1E 1D 1C 1B 1A
0F 0E 0D 0C 0B 0A
20h

Оставшееся адресное пространство может конфигурироваться разработчиком по своему усмотрению: в нем можно разместить стек, системные и пользовательские области данных. Обращение к ячейкам памяти данных возможно двумя способами. Первый способ - прямая адресация ячейки памяти. В этом случае адрес ячейки является операндом соответствующей команды. Второй способ - косвенная адресация с помощью регистров-указателей R0 или R1: перед выполнением соответствующей команды в один из них должен быть занесен адрес ячейки, к которой необходимо обратиться.

Для обращения к внешней памяти данных используется только косвенная адресация с помощью регистров R0 и R1 или с помощью 16-разрядного регистра-указателя DPTR.

Часть памяти данных представляет собой битовую область, в ней имеется возможность при помощи специальных битовых команд адресоваться к каждому разряду ячеек памяти. Адрес прямо адресуемых битов может быть записан также в виде (АдресБайта).(Разряд). Соответствие этих двух способов адресации можно определить по табл. 1.1.

Микроконтроллеры семейства МСS-51 построены по гарвардской архитектуре, в которой память программ и память данных разделе-ны, имеют собственные адресные пространства и способы доступа к ним.

Память программ


Максимальный объем памяти составляет 64К байт, из них 4К, 8К, 16К или 32К байт памяти (табл.7.3.1) располагаются на кристалле, остальной объем — вне кристалла.
При напряжении на выводе ЕА = V CC использу-ется как внутренняя, так и внешняя память, при ЕА = V CC = 0 — только внешняя па-мять.
В табл.7.3.1 приведены адреса обращения к памяти программ для указан-ных случаев.
Нижняя область памяти программ отводится для начала работы микроконт-роллера (стартовый адрес 0000h после сброса) и под обработку прерываний (ад-реса прерываний расположены с интервалом 8 байт: 0003h, 000Bh, 0013h и т.д.).


Память программ доступна только для чтения, причем при обращении:

● к внешней памяти программ вырабатывается сигнал ¯PSEN и всегда формиру-ется 16-разрядный адрес.
Младший байт адреса передается через порт P0 в первой половине машинного цикла и фиксируется по срезу строба ALE в регистре.
Во второй половине цикла порт P0 используется для ввода в МК байта данных из внешней памяти.
Старший байт адреса передается через порт P2 в течение всего времени обращения к памяти (рис.7.1.11);

● к внутренней памяти сигнал чтения не формируется и используются циклы обмена по внутренней шине микроконтроллера.

Память данных

Внутреннюю память данных можно условно разделить на три блока (табл.7.3.2).

Внутренняя память всегда адресуется байтом, который обеспечивает адреса-цию только к 256 ячейкам памяти.
Поэтому, как видно из табл.7.3.2, для адреса-ции к верхним 8-битным ячейкам внутреннего ОЗУ и регистрам специальных фун-кций SFR, занимающим одно и то же адресное пространство, в командах исполь-зуются разные способы адресации: косвенный и прямой.

Особенности организации нижней области внутреннего ОЗУ отражены в табл.7.3.3.

Младшие 32 байта внутреннего ОЗУ с адресами 00h.
1Fh сгруппированы в че-тыре банка по восемь регистров (R0.R7).
Следующие 16 байтов ОЗУ с адресами 20h.
2Fh представляют собой область памяти объемом 8×16= 128 бит, которая допускает обращение к каждому отдельному биту.
Для выбора адреса регистра банка используется его имя R0.
R7, для выбора банка — биты RS0, RS1 регистра слова состояния PSW.

Адреса битов

Адреса битов приведены в табл.7.3.3.

Адресация осуществляется прямым способом.

Список всех регистров специальных функций SFR с их адресами дан в табл.7.2.2.
Для наглядности в табл.7.3.

4 приведена карта адресов ре-гистров SFR рассматриваемых микросхем семейства MCS-51.
Адрес SFR опреде-ляется совокупностью цифр столбца и строки в шестнадцатеричной системе счисления.

Например, регистр CMOD имеет адрес D9h.

Для регистров SFR, адреса которых оканчиваются на 0h или 8h (они выделены полужирным шрифтом), помимо байтовой допускается побитовая адресация.

При этом адрес бита, занимающего в регистре N-й разряд, определяется как XXh + 0Nh, где XXh — адрес регистра SFR, N = 0.7.
Битовые адреса в этой облас-ти имеют значения от 80Н до FFH.
Например, адреса битов аккумулятора АСС ле-жат в пределах E0h-E7h.

Внешняя память данных (объемом до 64 Кбайт) создается дополнительными микросхемами памяти, подключаемыми к МК.
Для работы с внешней памятью данных используются специальные команды, поэтому адресные пространства внешней и внутренней памяти не пересекаются и, следовательно, оба вида памя-ти данных можно задействовать одновременно.

Для обращения к ячейкам внеш-ней памяти данных используются (рис.7.1.8):
● команды с косвенной адресацией;
● сигналы чтения ¯RD и записи ¯WR;
● порт P0 для передачи младшего байта адреса и приема/передачи байта данных;
● порт P2 для передачи старшего байта адреса.
Способы адресации.
В системе команд используется:
● прямая, косвенная, регистровая, косвенно-регистровая, непосредственная и индексная адресация (косвенная адресация по сумме базового и индексно-го регистров) операндов-источников;
● прямая, регистровая и косвенно-регистровая адресация операндов назначения.
Сочетание указанных способов (адресации) обеспечивает 21 режим адресации.
В этой и в приведенных ниже таблицах системы команд использованы следу-ющие обозначения:

Прямая адресация.

При этом способе адресации место расположения байта или бита данных определяется 8-битным адресом второго (и третьего) бай-та команды.
Прямая адресация используется только для обращения к внутренней памяти данных (нижним 128 байтам ОЗУ) и регистрам специальных функций.

Регистровая адресация.


Этот способ адресации обеспечивает доступ к данным, которые хранятся в одном из восьми регистров R0.
R7 текущего банка рабочих регистров.
Его также можно использовать для обращения к регистрам A, В, АВ (сдвоенному регистру), регистру-указателю DPTR и флагу переноса С.
Адрес указанных регистров заложен в код операции, благодаря чему сокращает-ся число байт команды.

Косвенно-регистровая адресация.


В этом случае адрес данных хра-нится в регистре-указателе, место расположения которого определено кодом операции.
Данный способ адресации используется для обращения к внешнему ОЗУ и верхней половине внутреннего ОЗУ.
Регистрами-указателями 8-битных ад-ресов могут служить регистры R0, R1 выбранного банка рабочих регистров или указатель стека SР, для 16-битной адресации используется только регистр указа-теля данных DPTR.

Непосредственная адресация.


При этом способе адресации данные непосредственно указаны в команде и находятся во втором (или во втором и тре-тьем) байтах команды, т.е.
не требуется адресация к памяти.
Например, по ко-манде МОV A,#50 в аккумулятор A загружается число 50.

Индексная адресация.


Этот способ представляет собой косвенно-реги-стровую адресацию, при котором адрес байта данных определяется как сумма содержимого базового (DPTR или РС) и индексного (А) регистров.
Способ ис-пользуется только для доступа к программной памяти и только в режиме чтения; он упрощает просмотр таблиц, зашитых в памяти программ.

Структура команд.

Длина команды составляет один (49 команд), два (45 ко-манд) или три (17 команд) байта.
Первый байт команды всегда содержит код опе-рации (КО), A второй и третий байты — адреса операндов или непосредственные значения данных.

В качестве операндов могут быть использованы отдельные биты, тетрады, байты и двухбайтные слова.
Можно выделить 13 типов команд, ко-торые приведены в табл.7.3.5:

● A, PC, SP, DPTR, Rn (n = 0, 7) — аккумулятор, счетчик команд, указатель стека, регистр указателя данных и регистр текущего банка;
● Rm (m = 0, 1) — регистр текущего банка, используемый при косвенной адре-сации;
● direct — 8-разрядный адрес прямо адресуемого операнда;
● bit — адрес прямо адресуемого бита;
● rel — относительный адрес перехода;
● addr11, addr16 — 11- и 16-разрядный абсолютный адрес перехода;
● #data8, #data16 — непосредственные данные (операнды) 8- и 16-разрядной длины;
● A10, A9, A0 — отдельные разряды 11-разрядного адреса;
● (.) — содержимое ячейки памяти по адресу, указанному в скобках;
● СБ, МБ — старший и младший байты 16-разрядного операнда.

Общие сведения о системе команд.

Система команд обеспечивает большие возможности обработки данных в виде бит, тетрад, байтов, двухбайтных слов, A также управления в режиме реального времени.
Для описания команд используется язык макроассемблера ASM51. Синтаксис большинства команд состоит из мнемонического обозначения (аббревиатуры) выполняемой операции, за которым следуют операнды.
С помощью операндов указываются различные способы адресации и типы данных.

В частности аббреви-атура MOV имеет 18 различных команд, предназначенных для обработки трех ти-пов данных (битов, байтов, адресов) в различных адресных пространствах.
Набор команд имеет 42 мнемонических обозначения 111 типов команд для конкрети-зации 33 функций МК.

Из 111 команд 64 выполняются за один машинный цикл, 45 — за два цикла и лишь две команды (MUL — умножение и DIV — деление) вы-полняются за 4 цикла. При частоте тактового генератора 12 МГц длительность машинного цикла (12 тактов) составляет 1 мкс. По функциональному признаку команды можно разбить на пять групп. Ниже приведено описание команд каждой группы, представленных в виде таблиц. Для компактности таблиц выделим группу команд (табл.7.3.6), выполнение которых влияет (помечены знаком +) на состояние флагов регистра слова состояния PSW.

Команды пересылки данных

Команды пересылки можно разбить на отдель-ные подгруппы.
Команды пересылки и обмена данными между ячейками внутрен-ней памяти (табл.7.3.7).

Команды 1-16, имеющие мнемонику MOV dest, src, предназначены для пересылки байта или двух байтов (команда 16) данных из ис-точника src в приемник dest, при этом:
● для указания источника (src) используется четыре способа адресации: регист-ровый (команды 2-4, 6, 8), прямой (команды 1, 7, 9, 11), косвенный (команды 5, 10) и непосредственный (команды 12-16);
● для указания приемника (dest) используется три способа: регистровый (команды 1, 3…5, 9, 12, 14, 16), прямой (команды 2, 7, 8, 10, 13), косвенный (команды 6, 11, 15).

Команды 17-20 обеспечивают обмен информацией между двумя ячейками внутренней памяти данных (или двустороннюю пересылку).
При выполнении ко-манд ХСН происходит обмен байтами, A команды XCHD — младшими тетрадами байтовых операндов.

Одной из ячеек всегда является аккумулятор A. В качестве другой ячейки при обмене байтами используется один из регистров Rn текущего банка, A также прямо или косвенно адресуемая ячейка внутренней памяти; при обмене тетрадами — только косвенно адресуемая ячейка внутренней памяти.

Так как во всех МК стек размещается во внутреннем ОЗУ, в эту же подгруппу включены команды (20, 21) обращения к стеку PUSH src, POP dest.
Эти команды ис-пользуют только прямой способ адресации, записывая байт в стек или восстанав-ливая его из стека.
Следует иметь в виду, что в тех МК, у которых в ОЗУ отсут-ствуют верхние 128 байт, увеличение стека за пределы 128 байт ведет к потере данных.

Команды пересылки данных между внутренней и внешней па-мятью данных (табл.7.3.8).

Эти команды используют только косвенную адре-сацию, при этом однобайтный адрес может располагаться в Р0 или R1 текущего банка регистров, A двухбайтный адрес — в регистре-указателе данных DРТR.
При любом доступе к внешней памяти роль приемника или источника операндов во внутренней памяти играет аккумулятор А.

Команды пересылки данных из памяти программ (табл.7.3.9).

Эти команды предназначены для чтения таблиц из программной памяти.

Команда MOVC A,@А + DPTR используется для обращения к таблице с числом входов от 0 до 255.

Номер требуемого входа в таблицу загружается в аккумулятор, A регистр DPTR устанавливается на точку начала таблицы. Отличительной особенностью другой команды является то, что в качестве указателя базы используется про-граммный счетчик PC и обращение к таблице производится из подпрограммы. Вначале номер требуемой точки входа загружается в аккумулятор, затем вызыва-ется подпрограмма с командой MOVC A,@А + PC. Таблица может иметь 255 вхо-дов с номерами от 1 до 255, так как 0 используется для адреса команды RET вы-хода из подпрограммы.

Команды арифметической обработки данных. Все арифметические коман-ды выполняются над беззнаковыми целыми числами. Операции над двумя операндами (табл.7.3.10). В операциях сложе-ния ADD, сложения с учетом переноса ADDC и вычитания с учетом заема SUBB:

● источником одного 8-битного операнда и приемником результата служит ак-кумулятор;
● источником другого операнда — либо один из рабочих регистров Rn (n = 0-7) текущего банки, либо прямо direct или косвенно @Rm (m = 0, 1) адресуемая ячейка памяти ОЗУ, либо непосредственные данные #data.

Операции умножения MUL и деления DIV выполняются над содержимым реги-стров A и В. При умножении старшие 8 разрядов результата записываются в ре-гистр В, младшие 8 разрядов — в регистр A.
Если произведение больше 255, устанавливается флаг переполнения OV; флаг переноса С всегда сбрасывается. Команда DIV выполняет деление 8-битного операнда аккумулятора A на 8-битный операнд регистра В.
При делении частное (старшие разряды) записывается в ре-гистр в A, остаток (младшие разряды) — в B. Флаги переноса C и переполнения OV сбрасываются.
При попытке деления на 0 устанавливается флаг переполнения OV. Операция деления чаще используется для сдвигов и преобразования оснований чисел.

При делении двоичного числа на 2 N происходит его сдвиг на N бит влево.
Лишние биты переносятся в регистр В.

Операции над однобайтными операндами (табл.7.3.11).

Команда DA используется для выполнения двоично-десятичных операций. Команды INC, DEC позволяют соответственно увеличить или уменьшить на единицу содержимое ячейки памяти.
Они применимы к содержимому аккумулято-ра A, одного из рабочих регистров Rn или ячейки памяти, адресуемой как пря-мым, так и косвенным способом.
Операция увеличения на единицу применима также к содержимому 16-разрядного регистра-указателя DPTR.

Команды логических операций.

Двуместные операции

(табл.7.3.12).

Команды AML, ORL, XRL позволяют выполнить три двуместные логические операции над 8-битными операндами: ANL — логическое умножение (AND), ORL — ло-гическое сложение (OR), XRL — исключающее ИЛИ (XOR).
Операции выполняются над отдельными битами операндов. Источником одного из операндов и одновре-менно приемником результата служит либо аккумулятор (А), либо прямо адресу-емая ячейка памяти (direct).
Для источника другого операнда используется реги-стровый, прямой, косвенный или непосредственный способ адресации.

Одноместные операции

(табл.7.3.13).
В состав группы входит также ряд одноместных операций над содержимым аккумулятора A: операции очистки (CLR), логического дополнения или инверсии (CPL), циклического и расширенного циклического сдвигов на 1 бит вправо (RL, RLC) и влево (RR, RRC), обмена тетрад или циклического сдвига байта на 4 разряда (SWAP), A также пустая операция (NOP), в результате которой состояние всех регистров МК (за исключением про-граммного счетчика) остается неизменным.

Команды передачи управления

Команды безусловного перехода

(табл.7.3.14).

Команды 1-3 отличаются лишь форматом адреса назначения.

Ко-манда LJMP (L — Long) выполняет «длинный» безусловный переход по указанному адресу addr16, загружая счетчик PC вторым и третьим байтами команды.
Команда обеспечивает переход в любую точку 64К байтного адресного пространства.

Ко-манда AJMP (А — Absolute) обеспечивает «абсолютный» переход по адресу внутри 2К байтной страницы, начальный адрес которой задается пятью старшими разря-дами программного счетчика PC (вначале содержимое PC увеличивается на 2).

Команда SJMP (S — Short) позволяет осуществить «короткий» безусловный переход по адресу, который вычисляется сложением смещения rel со знаком во втором байте команды с содержимым счетчика PC, предварительно увеличенного на 2.

Адрес перехода находится в пределах -128+127 байт относительно адре-са команды.
Для перехода в любую другую точку 64-килобайтного адресного про-странства может быть использована также команда 4 с косвенной @A+DPTR адре-сацией.
В этом случае содержимое A интерпретируется как целое без знака.

Пустая операция (NOP), в результате которой состояние всех регистров мик-ропроцессора (за исключением программного счетчика) остается неизменным.

Команды условного перехода

(табл.7.3.15).

С помощью команд JZ и JNZ осуществляется переход, если содержимое аккумулятора соответственно равно или не равно нулю.
Адрес перехода вычисляется путем сложения относительного знакового смещения rel с содержимым счетчика команд PC после прибавления к нему числа 2 (длины команды в байтах).

Содержимое аккумулятора остается не-изменным.
Команды на флаги не влияют.

Команды CJNE (3-6) служат для реализации условного перехода по результату сравнения двух 8-разрядных операндов, расположение которых указано в коман-дах.
Если их значения не равны, осуществляется переход.

Адрес перехода вычис-ляется сложением смещения rel с содержимым счетчика PC, предварительно уве-личенным на 3.
В противном случае выполняется следующая команда.

В графе Алгоритм показано влияние значений сравниваемых 8-разрядных операндов на флаг переноса С.
Команды DJNZ (7, предназначены для организации программных циклов.

Регистр Rn или прямо (direct) адресуемая ячейка представляют собой счетчик по-вторений цикла, A смещение rel (во втором и третьем байтах команд) — относи-тельный адрес перехода к началу цикла.
При выполнении команд содержимое счетчика уменьшается на единицу и проверяется на нуль.
Если содержимое счет-чика не равно нулю, осуществляется переход на начало цикла.
В противном слу-чае выполняется следующая команда.

Адрес перехода вычисляется сложением смещения с содержимым счетчика, предварительно увеличенным на длину ко-манды (на 2 или 3).
На флаги команды не влияют.

Команды вызова подпрограмм и возврата из программ

(табл.7.3.16).
Команды LCALL «длинный вызов» и ACALL «абсолютный вызов» осуществляют безусловный вызов подпрограммы, размещенной по указанному адресу.

Отличие этих команд от рассмотренных выше команд безусловного перехода состоит в том, что они сохраняют в стеке адрес возврата (содержимое счетчика) в основ-ную программу.
Команда возврата из подпрограммы RET восстанавливает из стека значение содержимого счетчика команд, A команда RETI помимо этого разрешает преры-вания обслуживающего уровня.

В командах передачи управления широко используется относительная адреса-ция, которая поддерживает перемещаемые программные модули.
В качестве отно-сительного адреса выступает 8-разрядное смещение rel со знаком, обеспечиваю-щее ветвление от текущего положения счетчика PC в обе стороны на ±127 байт.

Для перехода в любую другую точку 64К-байтного адресного пространства может быть использован либо прямой адрес addr16, либо косвенный @A+DPTR адрес.
В последнем случае содержимое A интерпретируется как целое без знака.

Вари-ант короткой прямой адресации addr11 внутри 2К-байтной текущей страницы вве-ден для совместимости с архитектурой МК48.

Все эти типы адресации могут быть применены только к операции перехода, A для операции вызова допустимы только прямой addr16 и внутренний addr11 способы адресации.
Во всех условных операциях может использоваться только относительная адресация.

Когда МК51 опознает запрос на прерывание, он генерирует одну из команд типа LCALL addr16, что автоматически обеспечивает запоминание адреса возврата в стеке.
Однако в отличии от МК48 в МК51 нет автоматически сохраняемой ин-формации о состоянии.

При этом логика прерываний перестает срабатывать на запросы того уровня, который был принят к обслуживанию.
Для понижения уров-ня прерывания служит команда возврата из прерывания RETI, которая кроме опе-рации, эквивалентной RET, включает операцию разрешения прерывания данного уровня.
К типовым условным операциям МК51 относятся также операции JZ, JNZ.
Од-нако появилась новая операция «Сравнить и перейти» CJNE.

По данной команде операнд сначала сравнивается по правилам вычитания целых чисел с константой и в соответствии с результатом сравнения выставляется флаг CY Затем в случае несовпадения с константой выполняется ветвление. Сравнивая аккумулятор, ре-гистр или ячейку памяти с последовательностью констант, получаем удобный способ проверки на совпадения, например с целью выявления особых случаев.

По сути дела команда CJNE является элементом оператора языков высокого уров-ня типа CASE.

Дальнейшее развитие получила команда DJNZ.
Теперь программист в качестве счетчика может использовать не только один из рабочих регистров Rn, но и лю-бую ячейку памяти DSEG.

Команды битовых операций.

Группа состоит из 12 команд, позволяющих вы-полнять операции над одним или двумя битами (сброс, установку, инверсию бита, A также логические И и ИЛИ), и 5 команд, предназначенных для реализации условных переходов (табл.7.3.17).

Команды обеспечивают прямую адресацию 128 битов, расположенных в шест-надцати ячейках внутреннего ОЗУ с адресами 20h.
2Fh (табл.7.3.3), и 128 битов, расположенных в регистрах специального назначения, адреса которых кратны восьми (выделены в табл.7.3.4 полужирным шрифтом).

При выполнении опера-ций над двумя одноразрядными операндами в качестве логического аккумулято-ра используется триггер регистра PSW, хранящий флаг переноса C (табл.7.1.2).

Команды MOV (1,2) осуществляют пересылку бита из одной прямо адресу-емой битовой ячейки внутреннего ОЗУ в триггер C или в обратном направлении.
Команды CRL (3, 4), SETB (5, 6) соответственно сбрасывают в нуль или устанавли-вают в единицу флаг переноса C или указанный бит.
С помощью команд CPL, ANL, ORL (7-12) выполняются логические операции инверсии, сложения и умножения.

В группу входят также команды (13-17) для реализации операций условных переходов с относительным 8-разрядным смещением rel.
Переходы могут быть реализованы как при установленном бите или флаге переноса (команды 13, 16), так и при сброшенном (команды 14, 17).

Команда JBC помимо перехода по вычис-ляемому адресу при выполнении условия (бит) = 1 производит сброс этого бита в нулевое состояние.
При выполнении команд условных переходов адрес перехо-да вычисляется после прибавления к содержимому счетчика чисел 3 или 2 (отра-жающих число байт в команде).

ПЛАН ЛЕКЦИИ

1. Введение

2. Арифметические и логические инструкции

3. Команды передачи данных

4. Булевы операции

5. Инструкции переходов

1. Введение

Система команд MCS-51 поддерживает единый набор инструкций, который предназначен для выполнения 8-битовых алгоритмов управления исполнительными устройствами. Существует возможность использования быстрых методов адресации к внутреннему ОЗУ, осуществления битовых операций над небольшими структурами данных. Имеется развернутая система адресации однобитовых переменных как самостоятельного типа данных, позволяющая использовать отдельные биты в логических и управляющих командах булевой алгебры.

Режимы адресации : набор команд MCS-51 поддерживает следующие режимы адресации. Прямая адресация : операнд определяется 8-битовым адресом в инструкции. Прямая адресация используется только для младшей половины внутренней памяти данных и регистров SFR . Косвенная адресация : инструкция адресует регистр, содержащий адрес операнда. Данный вид адресации используется для внешнего и внутреннего ОЗУ. Для указания 8-битовых адресов могут использоваться регистры R0 и R1 выбранного регистрового банка или указатель стека SP . Для 16-битовой адресации используется только регистр указателя данных DPTR .

Регистровые инструкции : регистры R0–R7 текущего регистрового банка могут быть адресованы через конкретные инструкции, содержащие 3-битовое поле, указывающее номер регистра в самой инструкции. В этом случае соответствующее поле адреса в команде отсутствует. Операции с использованием специальных регистров : некоторые инструкции используют индивидуальные регистры (например, операции с аккумулятором, DPTR , и т. д.). В данном случае адрес операнда вообще не указывается в команде. Он предопределяется кодом операции.

Непосредственные константы : константа может находиться прямо в команде за кодом операции.

Индексная адресация : индексная адресация может использоваться только для доступа к программной памяти и только в режиме чтения. В этом режиме осуществляется просмотр таблиц в памяти программ. 16-битовый регистр (DPTR или программный счетчик) указывает базовый адрес требуемой таблицы, а аккумулятор указывает на точку входа в нее.

Набор команд имеет 42 мнемонических обозначения команд для конкретизации 33 функций этой системы. Синтаксис большинства команд ассемблерного языка состоит из мнемонического обозначения функции, вслед за которым идут операнды, указывающие методы адресации и типы данных. Различные типы данных или режимы адресации определяются установленными операндами, а не изменениями мнемонических обозначений.

Систему команд условно можно разбить на пять групп: арифметические команды; логические команды; команды передачи данных; команды битового процессора; команды ветвления и передачи управления. Обозначения и символы, используемые в системе команд, приведены далее.

Таблица. Обозначения и символы, используемые в системе команд

Обозначение, символ

Назначение

Аккумулятор

Регистры текущего выбранного банка регистров

Номер загружаемого регистра, указанного в команде

direct

Прямо адресуемый 8-битовый внутренний адрес ячейки данных, который может быть ячейкой внутреннего ОЗУ данных (0–127) или регистром специальных функций SFR (128–255)

Косвенно адресуемая 8-битовая ячейка внутреннего ОЗУ данных

8-битовое непосредственное данное, входящее в код операции (КОП)

dataH

Старшие биты (15–8) непосредственных 16-битовых данных

dataL

Младшие биты (7­–0) непосредственных 16-битовых данных

11-битовый адрес назначения

addrL

Младшие биты адреса назначения

8-битовый байт смещения со знаком

Бит с прямой адресацией, адрес которого содержит КОП, находящийся во внутреннем ОЗУ данных или регистре специальных функций SFR

a15, a14...a0

Биты адреса назначения

Содержимое элемента Х

Содержимое по адресу, хранящемуся в элементе Х

Разряд М элемента Х


+

*
AND
OR
XOR
/X

Операции:
сложения
вычитания
умножения
деления
логического умножения (операция И)
логического сложения (операция ИЛИ)
сложения по модулю 2 (исключающее ИЛИ)
инверсия элемента Х

Мнемонические обозначения функций однозначно связаны с конкретными комбинациями способов адресации и типами данных. Всего в системе команд возможно 111 таких сочетаний.

2. Арифметические и логические инструкции

Как п ример арифметической команды , операция сложения может быть выполнена одной из нижеследующих команд.

ADD A ,7 F 16 – прибавить к содержимому регистра А число 7 F 16 и результат сохранить в регистре А;

ADD A ,@ R 0 – прибавить к содержимому регистра А число, адрес которого (@ – commercial at ) хранится в регистре R 0 (косвенная адресация), и результат сохранить в регистре А;

ADD A,R7 – прибавить к содержимому регистра А содержимое регистра R 7 и результат сохранить в регистре А;

ADD A,#127 – прибавить к содержимому регистра А число, адрес ячейки хранения которого 127 (# – символ номера), и результат сохранить в регист ­- ре А.

Все арифметические инструкции выполняются за один машинный цикл за исключением команды INC DPTR (смещение указателя данных DPTR на следующий байт), требующей два машинных цикла, а также операций умножения и деления, выполняемых за 4 машинных цикла. Любой байт во внутренней памяти данных может быть инкрементирован и декрементирован без использования аккумулятора.

Инструкция MUL AB производит умножение (multiplication – умножение) данных в аккумуляторе на данные, находящиеся в регистре B, помещая произведение в регистры A (младшая половина) и B (старшая половина).

Инструкция DIV AB делит (division – деление) содержимое аккумулятора на значение в регистре B, оставляя остаток в B, а частное – в аккумуляторе.

Инструкция DA A предназначена для двоично-десятичных арифметических операций (арифметические операции над числами, представленными в двоично-десятичном коде). Она не делает преобразования двоичного числа в двоично-десятичное , а лишь обеспечивает правильный результат при сложении двух двоично-десятичных чисел.

Пример логической команды : операция логического И может быть выполнена одной из следующих команд:

ANL A ,7 F 16 – логическое умножение содержимого регистра А на число 7 F 16 и результат сохраняется в регистре А;

ANL A ,@ R 1 – логическое умножение содержимого регистра А на число, адрес которого хранится в регистре R 1 (косвенная адресация), и результат сохранить в регистре А;

ANL A,R6 – логическое умножение содержимого регистра А на содержимое регистра R 6, и результат сохранить в регистре А;

ANL A,#53 – логическое умножение содержимого регистра А на число, адрес ячейки хранения которого 53 16 , и результат сохранить в регистре А.

Все логические операции над содержимым аккумулятора выполняются за один машинный цикл, остальные – за два. Логические операции могут производиться над любым из нижних 128 байтов внутренней памяти данных или над любым регистром SFR (регистров специальных функций) в режиме прямой адресации без использования аккумулятора.

Операции циклического сдвига RL A, RLC A и т. д. перемещают содержимое аккумулятора на один бит вправо или влево. В случае левого циклического сдвига младший бит перемещается в старшую позицию. В случае правого циклического сдвига происходит обратное .

Операция SWAP A осуществляет обмен младшей и старшей тетрад в аккумуляторе.

3. Команды передачи данных

Команда MOV dest,src позволяет пересылать данные между ячейками внутреннего ОЗУ или областью регистров специальных функций SFR без использования аккумулятора. При этом работа с верхней половиной внутреннего ОЗУ может осуществляться только в режиме косвенной адресации, а обращение к регистрам SFR – только в режиме прямой адресации.

Во всех микросхемах MCS-51 стек размещается непосредственно в резидентной памяти данных и увеличивается вверх. Инструкция PUSH вначале увеличивает значение в регистре указателя стека SP , а затем записывает в стек байт данных. Команды PUSH и POP используются только в режиме прямой адресации (записывая или восстанавливая байт), но стек является всегда доступным при косвенной адресации через регистр SP . Таким образом, стек может использовать и верхние 128 байт памяти данных. Эти же соображения исключают возможность использования стековых команд для адресации регистров SFR .

Инструкции передачи данных включают в себя 16-битовую операцию пересылки MOV DPTR,#data16 , которая используется для инициализации регистра указателя данных DPTR при просмотре таблиц в программной памяти или для доступа к внешней памяти данных.

Операция XCH A,byte применяется для обмена данными между аккумулятором и адресуемым байтом. Команда XCHD A,@Ri аналогична предыдущей , но выполняется только для младших тетрад , участвующих в обмене операндов.

Для доступа к внешней памяти данных используется только косвенная адресация. В случае однобайтных адресов используются регистры R0 или R1 текущего регистрового банка, а для 16-разрядных – регистр указателя данных DPTR . При любом методе доступа к внешней памяти данных аккумулятор играет роль источника либо приемника информации.

Для доступа к таблицам, размещённым в программной памяти, используются команды:

MOVC A,@A+DPTR ;

MOVC A,@A+PC .

В качестве базового адреса таблицы используется содержимое соответственно регистра указателя данных DPTR или PC (программного счётчика), а смещение берется из A . Эти команды используются исключительно для чтения данных из программной памяти, но не для записи в нее.

4. Булевы операции

Микросхемы MCS-51 содержат в своем составе «булевый» процессор. Внутреннее ОЗУ имеет 128 прямо адресуемых бит. Пространство регистров специальных функций SFR может также поддерживать до 128 битовых полей. Битовые инструкции осуществляют условные переходы, пересылки, сброс, инверсии, операции «И» и «ИЛИ». Все указанные биты доступны в режиме прямой адресации.

Бит переноса CF в регистре специальных функций «слово состояния программы PSW » используется как однобитный аккумулятор булевого процессора.

5. Инструкции переходов

Адреса операций переходов обозначаются на языке ассемблера меткой либо реальным значением в пространстве памяти программ. Адреса условных переходов ассемблируются в относительное смещение – знаковый байт, прибавляемый к программному счетчику PC в случае выполнения условия перехода. Границы таких переходов лежат в пределах между минус 128 и 127 относительно первого байта, следующего за инструкцией. В регистре специальных функций «слово состояния программы PSW » отсутствует флажок нуля, поэтому инструкции JZ и JNZ проверяют условие «равно нулю» как тестирование данных в аккумуляторе.

Существует три вида команды безусловного перехода: SJMP , LJMP и AJMP – различающиеся форматом адреса назначения. Инструкция SJMP кодирует адрес как относительное смещение, и занимает два байта. Дальность перехода ограничена диапазоном от минус 128 до 127 байт относительно инструкции, следующей за SJMP .

В инструкции LJMP используется адрес назначения в виде 16-битной константы. Длина команды составляет три байта. Адрес назначения может располагаться в любом месте памяти программ.

Команда AJMP использует 11-битную константу адреса. Команда состоит из двух байт. При выполнении этой инструкции младшие 11 бит адресного счетчика замещаются 11-битным адресом из команды. Пять старших бит программного счетчика PC остаются неизменными. Таким образом, переход может производиться внутри 2К-байтного блока, в котором располагается инструкция, следующая за командой AJMP .

Существует два вида команды вызовы подпрограммы: LCALL и ACALL . Инструкция LCALL использует 16-битный адрес вызываемой подпрограммы. В данном случае подпрограмма может быть расположена в любом месте памяти программ. Инструкция ACALL использует 11-битный адрес подпрограммы. В этом случае вызываемая подпрограмма должна быть расположена в одном 2К-байтном блоке с инструкцией, следующей за ACALL . Оба варианта команды кладут на стек адрес следующей команды и загружают в программный счетчик PC соответствующее новое значение.

Подпрограмма завершается инструкцией RET , позволяющей вернуться на инструкцию, следующую за командой CALL . Эта инструкция снимает со стека адрес возврата и загружает его в программный счетчик PC . Инструкция RETI используется для возврата из подпрограмм обработки прерываний. Единственное отличие RETI от RET состоит в том, что RETI информирует систему о том, что обработка прерывания завершилась. Если в момент выполнения RETI нет других прерываний, то она идентична RET .

Инструкция DJNZ предназначена для управления циклами. Для выполнения цикла N раз надо загрузить в счетчик байт со значением N и закрыть тело цикла командой DJNZ , указывающей на начало цикла.

Команда CJNE сравнивает два своих операнда как беззнаковые целые и производит переход по указанному в ней адресу, если сравниваемые операнды не равны. Если первый операнд меньше, чем второй, то бит переноса CF устанавливается в «1».

Все команды в ассемблированном виде занимают 1, 2 или 3 байта.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!