Настройка оборудования и программного обеспечения

Методы поиска и устранения неисправностей. А также причин неработоспособности электронных устройств

Название: Поиск неисправностей в электрических схемах
Бенда Дитмар
Год: 2010 (во быстрые...)
Страниц: 250
Формат: DjVu
Размер: 7.18 Mб
Язык: русский (перевод с немецкого)
В книге обобщен многолетний опыт практической работы и приведены проверенные методики поиска неисправностей для различных электронных устройств. На большом количестве примеров аналоговых и цифровых блоков, программируемых контроллеров и компьютерной техники показан системный подход и специфика поиска неисправностей в электрических схемах. Рассмотрены основные правила проведения технического обслуживания, фазы поиска неисправностей, диагностика устройств, тестирование электронных компонентов.

Оглавление
Предисловие
Глава 1 . Основные правила успешного технического обслуживания
1.1. Системный подход, логика и опыт гарантируют успех
1.2. Общение с клиентом
Глава 2. Получение информации об устройствах и системах
2.1. Системный сбор информации о знакомом и неизвестном
2.2. Собирайте информацию целенаправленно
2.3. Устанавливайте характерные черты структуры
Глава 3. Систематизированный поиск неисправностей в автоматизированных устройствах
3.1. Предпосылки и последовательность успешного поиска неисправностей
3.2. Оценка фактического состояния устройства
3.3. Локализация области неисправности
3.4. Мероприятия по ремонту и вводу в эксплуатацию
Глава 4. Определение полярности и напряжения в электронных блоках и схемах
4.1. Измерение напряжения
4.2. Неисправности в электрической цепи
4.3. Точка, взятая в качестве опорного потенциала, определяет полярность и значение напряжений
4.4. Примеры определения полярности и напряжений
4.5. Упражнения для закрепления полученных знаний
Глава 5 . Системный поиск неисправностей в аналоговых схемах
5.1. Определение напряжений в схемах
5.2. Последствия возможных коротких замыканий и обрывов при различных видах связи
Соединительные связи
Отрицательные обратные связи
Положительные обратные связи
5.3. Систематизированный поиск неисправностей в аналоговых схемах
5.4. Поиск неисправностей в схемах управления и регулировки
Электропривод трехфазного тока
Стабилизатор напряжения
5.5. Поиск неисправностей в колебательных схемах
LC-генератор синусоидальных колебаний
Мостовой RC-генератор
Функциональный преобразователь
5.6. Поиск неисправностей в операционных усилителях
Поиск неисправностей в предусилителях
Оконечный усилитель
5.7. Упражнения для закрепления полученных знаний
Глава 6. Системный поиск неисправностей в импульсных и цифровых схемах
6.1. Напряжения в цифровых схемах
6.2. Воздействия возможных коротких замыканий и внутренних обрывов
6.3. Систематизированный поиск ошибок в цифровой схеме
6.4. Ошибки в цифровых интегральных схемах
6.5. Упражнения для закрепления полученных знаний
Глава 7. Поиск неисправностей в системе с компьютерными схемами
7.1. Диагностика неисправностей в схемах с тремя состояниями
7.2. Проверка статических функциональных параметров
7.3. Проверка динамических функциональных параметров
7.4. Систематизированный поиск неисправностей в компьютерной схеме
7.5. Поиск неисправностей в схемах интерфейсов
7.6. Упражнения для закрепления полученных знаний
Глава 8. Поиск неисправностей в системах на программируемых контроллерах
8.1. Проверка статических и динамических функциональных параметров
8.2. Техническое обслуживание путем диагностики с помощью устройства визуального отображения
8.3. Систематизированный поиск неисправностей в схеме программируемого контроллера
8.4. Упражнения для закрепления полученных знаний
Глава 9 . Поиск неисправностей в системе с сетевым напряжением питания
9.1. Сетевые помехи и их воздействия
9.2. Поиск неисправностей в схемах выпрямителей
9.3. Поиск неисправностей в источниках питания
9.4. Упражнения для закрепления полученных знаний
Глава 10. Поиск ошибок в системах тестирования при обслуживании и производстве
10.1. Внутрисхемное тестирование
10.2. Поиск неисправностей с помощью контактной системы тестирования
10.3. Подготовка электронных блоков к тестированию
10.4. Локализация коротких замыканий
10.5. Упражнения для закрепления полученных знаний
Приложение. Ответы к упражнениям
Предметный указатель

Если вы профессионально занимаетесь ремонтом компьютеров, то всегда должны помнить об основном законе бизнеса: время - деньги. Независимо от того, являетесь ли вы частным предпринимателем или работаете по найму, ваши деловые успехи будут во многом зависеть от способности быстро и уверенно распознавать симптомы и выявлять причины неисправностей компьютеров и периферийных устройств. Для этого нужно иметь острый глаз, обладать здравым смыслом и некоторой долей интуиции. Кроме того, вы должны хорошо представлять себе алгоритм поиска и локализации неисправностей и четко планировать свои действия. Дело в том, что, несмотря на практически безграничное разнообразие конструкций и модификаций, а также вариантов настроек компьютеров, методология подготовки их к ремонту практически одинакова во всех ситуациях.

Универсальный алгоритм поиска неисправностей

Процедура ди­агностики и локализации неисправностей состоит из четырех основных этапов: выявления симптомов неисправности; идентификации и локализации ис­точника (или места) неисправности; замены или ремонта подозреваемого узла; повторной проверки компьютера с целью подтверждения его работоспособности. Если проблему устранить не удалось, то процедуру придется повторить заново. Приведенный алгоритм поиска неисправностей является универсальным, и им можно пользоваться при ремонте не только компьютерного оборудования.

Универсальный алгоритм поиска неисправностей

Выявление симптомов.

Причины выхода компьютера из строя могут быть как очень простыми (обрыв провода или плохой контакт в разъеме), так и весьма сложными (отказ интегральной схемы или целого узла). В любом случае, прежде чем браться за инструменты, вы должны тщательно проанализировать симптомы неисправности. Вот типичные вопросы, на которые вы должны ответить в первую очередь:

    Правильно ли вставлен- сменный диск (дискета)?

    Светятся ли индикаторы включения питания и активности жесткого диска?

    Не возникла ли проблема после того, как к компьютеру подключили что-нибудь новое (принтер, сетевой кабель) или просто переставили его в другое место?

Чем яснее и полнее вы представите себе симптомы неисправности - тем быстрее и легче вы сможете выявить ее причину и определить вышедший из строя узел или компонент.

Важно записывать все симптомы, с которыми вам приходится сталкивать- на первых порах это может показаться вам бессмысленной затеей. Но через некоторое время приступив к ремонту очередной системы, вы вдруг обнаружите в своих записях такие симптомы и обстоятельства, которые, возможно, и не будут полностью соответствовать конкретному случаю, но, во всяком случае, помогут существенно сузить круг поисков неисправности

Идентификация и локализация неисправности

Прежде чем начать поиск неисправности в аппаратной части компьютера, надо убедиться в том, что виновато именно «железо». Это не всегда очевидно, хотя, конечно, бывают однозначные ситуации (например, компьютер не включается, экран дисплея пуст и т.д.). Не забывайте о том, что функционирование персонального компьютера - это процесс тесного взаимодействия аппаратуры и программного обеспечения.

Неправильно установленный или настроенный компонент программного обеспечения может стать причиной системной ошибки.

Когда вы убедитесь, что неисправность возникла именно на аппаратном уровне, выявив потенциальный источник можно приступать к ремонту!

Ремонт или замена

Поскольку компьютер и его периферийные устройства в подавляющем большинстве случаев собраны из функционально законченных узлов, практически всегда легче заме­нить узел целиком, чем пытаться найти неисправность на уровне его отдельных компо­нентов. Даже если у вас есть время, документация и диагностическая аппаратура, многие сложные узлы и компоненты запатентованы, и раздобыть запасные детали к ним будет весьма непросто. Усилия и нервы, затраченные на поиск и получение этих деталей, могут обойтись вам дороже, чем замена узла в целом. В пользу замены говорит и то обстоятельст­во, что многие фирмы-производители и продавцы в течение достаточно длительного вре­мени хранят на складах нераспроданные запасы узлов и оборудования. Однако учтите, что зачастую, для того чтобы заказать и получить необходимое для ремонта комплектующее изделие, необходимо знать его заводской шифр.

В процессе ремонта могут возникнуть непредвиденные осложнения, которые вынудят вас на некоторое время приостановить работу. В частности, вам, возможно, придется по­дождать несколько дней до тех пор, пока вы не получите заказанные комплектующие. Возьмите за правило максимально собирать ремонтируемую систему, прежде чем оста­вить ее на какое-то время в покое. Оставшиеся детали упакуйте в полиэтиленовые пакеты, заклейте их и подпишите. Если вы имеете дело с электронными компонентами (печатны­ми платами), то хранить их надо в антистатической упаковке (пакетах или коробках). Час­тичная сборка (а также подробные записи и тщательная маркировка компонентов) изба­вят вас от сомнений и ошибок при последующем восстановлении компьютера.

Другая проблема, порожденная так радующим нас быстрым техническим прогрессом, состоит в том, что компоненты компьютеров редко залеживаются на полках магазинов и складов. Например, видеокарту, купленную год назад, почти наверняка уже сняли с про­изводства. Дисководы CD-ROM с четырехкратной скоростью считывания,(4х), считав­шиеся несколько лет назад чудом техники, сейчас можно купить за гроши, и то лишь на распродажах компьютерного «антиквариата». Новые модели работают на порядок быст­рее. Поэтому при выходе компьютера из строя и необходимости замены какого-либо узла не исключен вариант, что придется его модернизовать - просто потому, что вам не удаст­ся разыскать необходимую запасную часть. Именно поэтому во многих случаях предпоч­тительнее сразу приступать к модернизации, а не тратить время на диагностику и ремонт.

Наиболее часто встречающиеся неисправности в электрических схемах электроприборов и бытовой техники:
1) обрыв (сопротивление электрической цепи равно бесконечности);
2) значительное увеличение сопротивления;
3) значительное уменьшение сопротивления;
4) короткое замыкание (сопротивление электрической цепи близко к нулю).
Общие причины возникновения этих неисправностей:
— обрыв из-за старения элементов, прохождения повышенных токов, ударов, вибрации и коррозии;
— значительное увеличение сопротивления электрических цепей по сравнению с номинальным значением, вызываемое старением элементов, ухудшением контактов и контактных соединений, отклонением параметров отдельных элементов;
— значительное уменьшение сопротивления электрических цепей по сравнению с номинальным значением из-за увеличения поверхностных утечек и старения элементов.
Короткие замыкания являются следствием пробоя изоляции, замыкания проводников и элементов на корпус и между собой (для проводников разных полярностей и фаз).


При поиске неисправности необходимо знать и уметь использовать признаки исправной работы электрооборудования.
Их можно разделить на две основные группы:
активные — показания световых и звуковых сигналов, сигнализаторов, срабатывания средств защиты, а также признаки, выявляемые при измерении прибором;
пассивные или вторичные признаки, воспринимаемые при внешнем осмотре электрооборудования (визуальные, звуковые, осязательные, обонятельные).
Световые и звуковые сигналы, сигнализаторы позволяют наблюдать за состоянием электроприборов.
Средства защиты (предохранители, максимальные или минимальные реле, автоматы и т. п.), срабатывая, отключают электрические цепи от источников электроэнергии при наличии в отключенной части схемы повышенных токов утечки, токов перегрузки и коротких замыканий.
При неисправностях - типа обрыва - защита обычно не срабатывает, но ее нормальное состояние при наличии неисправности в электрической схеме является косвенным свидетельством того, что повреждение имеет характер обрыва.
Поиск неисправностей производится путем направленных измерений параметров элементов электрических схем с помощью переносных приборов и измерительных комплектов, используя активные признаки.
При измерении параметров (сопротивление, ток, напряжение) отдельных элементов в электрических схемах (например, логических систем управления и т. п.) с помощью переносных приборов необходимо использовать карты сопротивлений, напряжений, токов на выходе отдельных элементов и блоков, приводимые в инструкциях по эксплуатации этих аппаратов.
При проведении специальных направленных измерений в практике используется ряд частных способов поиска неисправностей:
-- промежуточных измерений, дающих возможность последовательно проследить прохождение сигналов по различным каналам системы;
— исключения, позволяющий посредством измерений исключить исправные части проверяемой схемы и выделить отказавший элемент;
— замены блоков (деталей), в которых предполагается наличие неисправности, на однотипные заведомо исправные;
— сравнения результатов испытаний отказавшей схемы с результатами испытаний исправной схемы того же типа, эксплуатируемой в тех же условиях.
В общем случае поиск неисправностей состоит из следующих
этапов:

а) установление факта неисправности электроприбора
по изменению активных и пассивных признаков нормальной работы;
б) анализ имеющихся признаков неисправностей и сопоставление их с возможным состоянием элементов электроприбора;
в) сравнение признаков неисправностей, указанных в инструкциях по эксплуатации и известных из опыта эксплуатации, с наблюдаемыми признаками;
г) выбор оптимальной последовательности поиска и объема дополнительных измерений для обследования элементов, в которых возможно появление неисправностей;
д) последовательное измерение;
е) общая оценка результатов испытаний и заключение о наиболее вероятных причинах неисправности выделенного элемента;
ж) устранение неисправности.
Основными причинами неисправности элементов электроники являются:
--перегрузки по току;
--перенапряжения;
--повышенная температура окружающей среды;
--недопустимая вибрация, удары.


При возникновении неисправности или отказа объекта (системы, устройства, блока, модуля, электронной платы) поиск неисправного элемента электроники рекомендуется начинать после предварительной проверки исправности:

Сигнальных ламп, предохранителей, выключателей и других средств коммутации и защиты объекта;

Блока или узла питания объекта путем измерения вольтметром напряжения на входе и выходе;
внешних устройств — датчиков, сигнализаторов, конечных выключателей, мониторов, кинескопов, акустических систем и т. д.

Дальнейший поиск неисправного элемента рекомендуется выполнять, с учетом следующие указаний:

Должен быть изучен и уяснен принцип действия неисправного объекта;

Вначале отыскивается более сложный неисправный объект, далее - более простой (по принципу система - блок - узел - элемент);

Анализируются признаки неисправности, выдвигаются предположения ее причин и выбирается метод проверки;

Проводится выборочная проверка участков и отдельных элементах, неисправности которых наиболее вероятны, а проверка их занимает наименьшее время;

Если выборочной проверкой неисправный элемент не обнаружен, следует перейти к поиску методом исключения, двигаясь от входа к выходу объекта, либо деля его перед началом следующей проверки на две равные по трудоемкости проверки части;

Если неисправность нехарактерна, то целесообразно, опустив этап выборочной проверки, начинать поиск сразу с метода исключения.

Вводить и выводить из действия съемные объекты для осмотра, замены на запасные или поиска неисправных элементов рекомендуется при выключенном напряжении питания, особенно при наличии разъемных контактных соединений.

При внешнем осмотре объекта необходимо обращать внимание

На нарушения защитных и изоляционных покрытий;

На изменение цвета, наличие потемнений, вздутий и трещин;

На исправность креплений, контактных поверхностей, соединений и паек;

На температуру элементов (корпусов, транзисторов, резисторов, диодов, микросхем, электролитических конденсаторов) сразу же после выключения схемы.

При этом необходимо помнить, что температура корпусов при нормальной эксплуатации
не должна превышать 45-60°С - на ощупь (превышение температуры выше 60°С рука не терпит).

Элементы с обнаруженными изъянами подлежит проверке в первую очередь.

Определение неисправного элемента в объекте, находящемся под напряжением, рекомендуется выполнять с использованием исправных удлинителей и переходных устройств, измерительных приборов с высоким внутренним сопротивлением и имеющихся в документации указаний о значениях и полярности потенциалов.

При отсутствии необходимых данных поиск может производиться путем сравнения по участкам напряжений на одинаковых элементах заведомо исправного (запасного или аналогичного) и неисправного объектов.

Определение неисправного элемента без подачи напряжения на объект может производиться измерением сопротивлений посредством омметра по участкам или элементам, работоспособность
которых вызывает сомнение.

При необходимости один или несколько выводов элементов могут быть отключены (отпаяны).

При нарушении исправности элемента (увеличение тока утечки, уменьшение сопротивления изоляции или напряжения переключения и т. п.) необходимо выполнить измерения его основных параметров посредством обычных или специальных приборов и проверочных схем.

При отсутствии паспортных данных элемента результаты измерений могут быть сопоставлены с аналогичными данными запасных заведомо исправных элементов.

В процессе поиска, проверки и замены неисправных элементов (особенно полупроводниковых приборов) с использованием наиболее простых средств необходимо внимательно маркировать выводы приборов.

После обнаружения неисправного элемента анализируются возможные причины неисправности, которые должны быть устранены до замены его и ввода объекта в действие.

Для повышения достоверности результатов измерение параметров элементов рекомендуется выполнять в сухом помещении при температуре воздуха 20—25 °С (особенно для , германиевых диодов и транзисторов).

Если принятые меры по осмотру и проверке неисправного объекта не привели к восстановлению его работоспособности, а поиск неисправного элемента не дал результата, объект подлежит передаче в ремонт спец мастерские.

Самостоятельное вскрытие и ремонт сложных объектов, основанных на современных полупроводниковых элементах, при отсутствии четких указаний в инструкции по эксплуатации не рекомендуется.

Практические методы поиска и устранения неисправностей в РЭА, приведены без привязки к конкретному оборудованию. Под причинами неработоспособности подразумеваются ошибки разработчиков, монтажников и т.д. Методы являются взаимосвязанными между собой и почти всегда необходимо их комплексное применение. Порой поиск очень тесно связан с устранением.

Основные концепции поиска неисправностей.

1. Действие не должно наносить вреда исследуемому устройству.

2. Действие должно приводить к прогнозируемому результату:

Выдвижение гипотезы о исправности или неисправности блока, элемента.

Подтверждение или опровержение выдвинутой гипотезы и как следствие локализации неисправности;

3. Необходимо различать вероятную неисправность и подтвержденную (обнаруженную неисправность). Выдвинутую гипотезу и подтвержденную гипотезу.

4. Необходимо адекватно оценивать ремонтопригодность изделия. Например, платы с элементами в корпусе BGA имеют очень низкую ремонтопригодность, вследствие невозможности или ограниченной возможности применения основных методов диагностики.

Схема описания методов: суть метода возможности метода, достоинства метода, недостатки метода, применение метода

1. Выяснения истории появления неисправности. Суть метода:

История появления неисправности много может рассказать о локализации неисправности, о том какой модуль является источником неработоспособности системы, а какие модули вышли из строя в следствие первоначальной неисправности, о типе неисправного элемента. Также знание истории появления неисправности позволяет сильно сократить время тестирование устройства, повысить качество ремонта, надежность исправленного оборудования. Выяснение истории позволяет выяснить не является ли неисправность результатом внешнего воздействия, как то климатические факторы (температура, влажность, запыленность и пр.), механические воздействия, загрязнение различными веществами и пр.

Примеры: если неисправность сначала проявлялась редко, а затем стала проявляться чаще в течение недели или нескольких лет), то скорее всего неисправен электролитические конденсатор, электронная лампа или силовой полупроводниковый элемент чрезмерный разогрев которого приводит к ухудшению характеристик.

Если неисправность появилась в результате механического воздействия, то вполне вероятно ее удастся выявить внешним осмотром блока.

Если неисправность появляется при незначительном механическом воздействии, то ее локализацию следует начать с использования механических воздействий на отдельные элементы.

Возможности метода: Метод позволяет очень оперативно выдвинуть гипотезу о локализации неисправности.


Достоинства метода: нет необходимости знать тонкости работы изделия; оперативность; не требуется наличие документации.

Недостатки метода: необходимость получить информацию о событиях растянутых во времени, при которых вы не присутствовали, неточность и недостоверность предоставляемой информации; в некоторых случаях велика вероятность ошибки, и неточность локализации; требует подтверждения и уточнения другими методами.

2.Внешний осмотр. Суть метода:

Внешним осмотром зачастую пренебрегают, но именно внешний осмотр позволяет локализовать порядка 50% неисправностей. Особенно в условиях мелкосерийного производства. Внешний осмотр в условиях производства и ремонта имеет свою специфику. В условиях производства особое внимание необходимо уделять качеству монтажа. Качество монтажа включает в себя: правильность размещение элементов на плате, качество паянных соединений, целостность печатных проводников, отсутствие инородных включений в материал платы, отсутствие замыканий (порой замыкания видны только под микроскопом или под определенным углом), целостность изоляции на проводах, надежное крепление контактов в разъемах. Иногда неудачный конструктив провоцирует замыкания или обрывы.

В условиях ремонта следует выяснить работало ли устройство когда-нибудь правильно. Если не работало (случай заводского дефекта), то следует проверить качество монтажа. Если же устройство работало нормально, но вышло из строя (случай собственно ремонта), то следует обратить внимание на следы тепловых повреждений электронных элементов, печатных проводников, проводов, разъемов и пр. Также при осмотре необходимо проверить целостность изоляции на проводах, трещины от времени, трещины в результате механического воздействие, особенно в местах где проводники работают на перегиб (например слайдеры и флипы мобильных телефонов). Особое внимание следует обратить на наличие загрязнений, пыли, вытекания электролита и запах. Наличие загрязнений может являться причиной не работоспособности РЭА или индикатором причины неисправности (например вытекание электролита).

Во всех случаях следует обратить внимание на любые механические повреждения корпуса, электронных элементов, плат, проводников, экранов и пр. пр.

Возможности метода:

Метод позволяет оперативно выявить неисправность и локализовать ее с точностью до элемента.

Достоинства метода: оперативность; точная локализация; требуется минимум оборудования; не требуется наличие документации (или наличие в минимальном количестве).

Недостатки метода: позволяет выявлять только неисправности имеющие проявление во внешнем виде элементов и деталей изделия; как правило требует разборки изделия, его частей и блоков.

2. Прозвонка. Суть метода:

Хотя данная методика имеет определенные недостатки она очень широко применяется в условиях мелкосерийного производства, в связи со своей простотой и эффективностью. Суть метода в том что при помощи омметра, в том или ином варианте, проверяется наличие необходимых связей и отсутствие лишних соединений (замыканий). На практике как правило достаточно проверить наличие необходимых связей и отсутствие замыканий по цепям питания. Отсутствие лишних связей также обеспечивается технологическими методами: маркировка и нумерация проводов в жгуте. Проверку на наличие лишних связей проводят в случае, когда есть подозрение на конкретные проводники, или подозрение на конструкторскую ошибку. Проводить проверку на наличие лишних связей чрезвычайно трудоемко. В связи с этим ее проводят как один из заключительных этапов, когда возможная область замыкания (например, нет сигнала в контрольной точке) локализована другими методами. Очень точно локализовать замыкание можно при помощи миллиомметра, с точностью до нескольких сантиметров.

Прозванивать лучше по таблице прозвонки, составленной на основании схемы электрической принципиальной. В этом случае исправляются возможные ошибки конструкторской документации и обеспечивается отсутствие ошибок в самой прозвонке.

Возможности метода: предупреждение неисправностей при производстве, контроль качества монтажа; проверка гипотезы о наличии неисправности в конкретной цепи.

Достоинства метода: простота; не требуется высокая квалификация исполнителя; высокая надежность; точная локализация неисправности.

Недостатки метода: высокая трудоемкость; ограничения при проверке плат со смонтированными элементами и подключенных жгутов, элементов в составе схемы; необходимость получить прямой доступ к контактам и элементам.

4. Снятие внешних рабочих характеристик. Суть метода.

При применении метода изделие включается в рабочих условиях или в условиях имитирующих рабочие. Проверяют характеристики сравнивая их с необходимыми, характеристиками исправного изделия или теоретически рассчитанными.

Возможности метода: позволяет достаточно оперативно диагностировать изделие; позволяет примерно оценить расположение неисправности, выявить функциональный блок работающий не правильно, в случае если изделие работает не правильно.

Достоинства метода: достаточная высокая оперативность; точность, адекватность; оценка изделия в целом.

Недостатки метода: необходимость специализированного оборудования или, как минимум, необходимость собрать схему подключения; необходимость стандартного оборудования; необходимость достаточно высокой квалификации исполнителя.

Применение метода:

Например: В телевизоре наличие изображения и его параметры, наличие звука и его параметры, энергопотребление, тепловыделение. В мобильном телефоне на тестере проверяют параметре RF тракта и по отклонению тех или иных параметров судят о исправности функциональных блоков. и т.д.

5. Наблюдение прохождения сигналов по каскадам.

Данный метод достаточно эффективен. К недостаткам следует отнести трудоемкость и неоднозначность результата.

Суть метода в том, что при помощи измерительной аппаратуры (осциллограф, тестер, анализатор спектра и др.) наблюдают правильность распространение сигналов по каскадам и цепям устройства. В цепях с обратными связями очень тяжело получить однозначные результаты, в схемах с последовательным расположением каскадов, пропадание правильного сигнала в одной из контрольных точек, говорит о возможной неисправности либо выхода, либо замыкания по входу, либо о неисправности связи.

В начале вычленяют встроенные источники сигналов (тактовые генераторы, датчики, модули питания и пр.) и последовательно находят узел в котором сигнал не соответствует правильному, описанному в документации или определенному при помощи моделирования. После проверки правильности функционирования встроенных источников сигналов на вход (или входы) подают испытательные сигналы и вновь контролируют правильность их распространения и преобразования. В ряде случаев для более эффективного применения метода требуется временная модификация схемы, т.е. если необходимо и возможно разрыв цепей обратной связи, разрыв цепей связи входа и выхода подозреваемых каскадов.

Возможности метода: оценка работоспособности изделия в целом; оценка работоспособности по каскадам и функциональным блоком.

Достоинства метода: высокая точность локализации неисправности; адекватность оценки состояния изделия в целом и по каскадам.

Недостатки метода: большая затрудненность оценки цепей с обратной связью; необходимость высокой квалификации исполнителя.

6. Сравнение с исправным блоком.

Сравнение с исправным блоком очень эффективный метод, потому что документированы не все характеристики изделия и сигналы не во всех узлах схемы. Суть метода заключается в том, что сравниваются различные характеристики заведомо исправного изделия и не исправного. Необходимо начать сравнение со сравнения внешнего вида, расположения элементов и конфигурации проводников на плате, отличие в монтаже говорит о том, что конструктив изделия был изменен и вполне вероятно допущена ошибка.

Возможности метода: оперативная диагностика в комбинации с другими методами.

Достоинства метода – оперативный поиск неисправностей, нет необходимости использовать документацию.

Недостатки метода: необходимость в наличии исправного изделия, необходимость в комбинации с другими методами

7. Моделирование.

Суть метода в том, что моделируется поведение исправного и неисправного устройства и на основе моделирования выдвигается гипотеза о возможной неисправности и затем гипотеза проверяется измерениями.

Метод применяется в комплексе с другими методами для повышения их эффективности.

При устранении периодический проявляющейся неисправности необходимо применять моделирование для выяснения мог ли заменяемый элемент провоцировать данную неисправность. Для моделирования необходимо представлять принципы работы оборудования и порой знать даже тонкости работы.

Возможности метода: оперативное и адекватное выдвижение гипотезы о локализации неисправности.

Достоинства метода: возможность работать с исчезающими неисправностями, адекватность оценки.

Недостатки метода: необходим высокая квалификация исполнителя, необходима комбинация с другими методами.

8. Разбиение на функциональные блоки.

Для предварительной локализации неисправности весьма эффективно разбить устройство на функциональные блоки. Надо учитывать, что зачастую конструкторское разбиение на блоки не является эффективным с точки зрения диагностики так как один конструктивный блок может содержать несколько функциональных блоков или один функциональный блок может быть конструктивно выполнен в виде нескольких модулей.

Возможности метода: позволяет оптимизировать применение других методов.

Достоинства метода: ускоряет процесс поиска неисправности

Недостатки метода: необходимо глубокое знание схемотехники изделия

9. Временная модификация схемы.

Частичное отключение цепей применяется в следующих случаях:

Когда цепи оказывают взаимное влияние и не ясно какая из них является причиной неисправности,

Когда неисправный блок может вывести из строя другие блоки,

Когда есть предположение, что не правильная/неисправная цепь блокирует работу системы

Следует с особой осторожностью отключать цепи защиты и цепи отрицательной обратной связи, т.к. их отключение может привести к значительному повреждению изделия. Отключение цепей обратной связи может приводить к полному нарушению режима работы каскадов и в результате не дать желаемого результата. Размыкание цепе ПОС в генераторах естественно приводит к срыву генерации но может позволить снять характеристики каскадов.

Возможности метода: локализация неисправности в цепях с ОС, точная локализация неисправности.

Достоинства метода - позволяет более точно локализовать неисправность.

Недостатки метода: необходимость модифицировать систему, необходимость знания тонкостей работы устройства.

10. Включение функционального блока вне системы, в условиях моделирующих систему. По сути метод является комбинацией методов: разбиение на функциональные блоки и снятие внешних рабочих характеристик.

При обнаружении неисправностей «подозреваемый» блок проверяется вне системы, что позволяет либо сузить круг поиска, если блок исправен, либо локализовать неисправность в пределах блока, если блок неисправен. При применении данного метода необходимо следить за корректностью создаваемых условий и применяемых тестов. Блоки могут быть плохо согласованный между собой на стадии разработки.

Возможности метода: проверка гипотезы о работоспособности той или иной части системы.

Достоинства метода: возможность испытания и ремонта функционального блока без наличия системы.

Недостатки метода: необходимость собирать схему проверки

11. Предварительная проверка функциональных блоков.

Очень широко применяется для профилактики неисправностей системы в условиях производства новых изделий. Функциональный блок предварительно проверяется вне системы, на специально изготовленном стенде (рабочем месте).

При ремонте, метод имеет смысл если для блока требуется не слишком много входных сигналов или иначе говоря не слишком трудно имитировать систему. Например, этот метод имеет смысл применять при ремонте блоков питания.

12. Метод замены.

Подозреваемый блок/компонент заменяется на заведомо исправный. И проверяется функционирование системый. По результатам проверки судят о правильности гипотезы в отношении неисправности. Возможны несколько случаев:

Когда поведение системы не изменилось, это означает что гипотеза не верна

Когда все неисправности в системе устранены, значит неисправность действительно локализована в замененном блоке

Когда исчезла часть дефектов, это может означать что устранена только вторичная неисправность и исправный блок вновь сгорит под воздействием первичного дефекта системы. В этом случае возможно лучшим решением будет вновь поставить замененный блок (если это возможно и целесообразно) и продолжить поиск неисправностей с тем чтобы устранить именно первопричину.

Например, неисправность блока питания может привести к неудовлетворительной работе нескольких блоков, один из которых выйдет из строй в результате перенапряжения.

13. Проверка режима работы элемента.

Суть метода в том, что проверяют соответствие токов и напряжений в схеме предположительно правильным, отраженным в документации, рассчитанным при моделировании, полученным при исследовании исправного блока. На основании этого делают заключение о исправности элемента.

Правильность логических уровней цифровых схем (соответствие стандартам, а также сравнивают с обычными, типичными уровнями), проверяют падения напряжений на диодах, резисторах (сравнивают с расчетным или со значениями в исправном блоке).

14. Провоцирующие воздействие.

Повышение или понижение температуры, влажности механическое воздействие. Подобные воздействия очень эффективно для обнаружения пропадающих неисправностей.

15. Проверка температуры элемента.

Суть метода проста, любым измерительным прибором (или пальцем) нужно оценить температуру элемента или сделать вывод о температуре элемента по косвенным признакам (цвета побежалости, запах горелого и пр.). На основании этих данных делают вывод о возможной неисправности элемента.

16. Выполнение тестовых программ.

Суть метода заключается в том, что на работающей системе выполняется тестовая программа которая взаимодействует с различными компонентами системы и предоставляет информацию о их отклике, либо система под управлением тестовой программы управляет периферийными устройствами и оператор наблюдает отклик периферийных устройств, либо тестовая программа позволяет наблюдать отклик периферийных устройств на тестовое воздействие (нажатие клавиши, реакция датчика температуры на изменение температуры и пр.).

Метод применим только для заключительного тестирования и устранения очень мелких недоработок.

Метод имеет существенные недостатки т.к. для исполнения тестовой программы ядро системы должно находиться в исправном состоянии, не правильный отклик не позволяет точно локализовать неисправность (может быть неисправна как периферия так и ядро системы, так и тест-программа).

К достоинствам метода следует отнести очень быструю оценку по критерию работает - не работает.

17. Пошаговое исполнение команд.

Этот метод можно классифицировать как одну из разновидностей «метода исполнения тестовых программ», но применение метода возможно на почти не работоспособной системе. Метод очень эффективен для отладки микропроцессорных систем на стадии разработки.

К недостаткам метода следует отнести очень большую трудоемкость. К достоинствам очень низкую стоимость необходимого оборудования.

18. Тестовые сигнатуры.

19.«Выход на вход».

Если изделие/система имеет выход (множество выходов) и имеет вход (множество входов) и вход/выход могут работать в дуплексном режиме, то возможна проверка системы в которой сигнал с выхода, через внешние связи подается на вход. Анализируется наличие/отсутствие сигнала, его качество и по результатам дается оценка о работоспособности соответствующих цепей.

20. Типовые неисправности.

21. Анализ влияния неисправности.

Повреждение в электросхемах кранов

Электрическое оборудование башенного крана состоит из огромного числа
электродвигателей, электронных аппаратов и устройств, связанных меж собой
проводкой, длина которой добивается нескольких тыщ метров. В процессе
работы крана могут появляться повреждения в электронных схемах. Эти повреждения
могут быть вызваны выходом из строя частей машин и аппаратов, обрывом
проводки и повреждением изоляции.

Способы устранения дефектов в электронных схемах кранов

Неисправности электронной схемы избавляют в два шага. Поначалу отыскивают
неисправный участок схемы, а потом восстанавливают его. Более непростой 1-ый
шаг. Умение выявить место неисправности в более маленький срок и с
меньшими затратами труда имеет очень принципиальное значение, потому что позволяет
существенно уменьшить простои крана. Восстановление покоробленного участка обычно
сводится к подмене неисправного элемента (контакта, катушки, провода) либо
соединению оборванной проводки.

Неисправности электронных схем можно поделить на четыре группы: обрыв
электронной цепи; куцее замыкание в цепи; замыкание на корпус (пробой
изоляции); появление обходной цепи при замыкании меж собой проводов.
Все эти неисправности могут иметь разные наружные проявления в зависимости
от особенностей электронной схемы крана. Потому при устранении неисправности
следует кропотливо проанализировать работу схемы во всевозможных режимах, выявить
отличия в работе отдельных устройств крана и только после чего приступить к
поиску повреждений в той части схемы, которая может вызвать эти отличия.

Нельзя дать методику, применимую для поисков хоть какого варианта неисправности,
так как даже однообразные схемы привода для различных устройств крана имеют свои
особенности. Но некие общие правила могут быть применены при анализе
хоть какой крановой электросхемы.

Сначала определяют, в какой цепи - силовой либо управления - появилась
неисправность.

Разглядим пример неисправности электронной схемы привода
механизма поворота крана С-981А. Неисправность состоит в том, что механизм
поворота не врубается в направлении На лево. Все другие механизмы, в том числе
и механизм поворота в направлении На право, работают.

Если при пробном включении ручки командоконтроллера в 1-ое положение
На лево не врубается магнитный пускатель К2 (рис 1, а), неисправность следует
находить в цепи управления, т. е. в цепи катушки этого пускателя (цепь: провод 27,
контакт В1-3 пускателя К2 и перемычки меж главными контактами пускателя К2 и
пускателя К1.

Рис. 1. Поиск места неисправности в электронной схеме привода поворота
крана С-981А;


а - принципная электронная схема привода поворота крана;
б - монтажная электронная схема реверсивного магнитного пускателя; /, //,
///, IV - последовательность включения вольтметра при проверке цепи

Место обрыва можно найти, проверяя цепь при помощи вольтметра либо
контрольной лампы, которые включают, как показано на рисунке. 1-ое
включение служит для контроля работы самого вольтметра (контрольной лампы).
Допустим, что при подключении вольтметра к клемме 31 он указывает напряжение
(лампа пылает), а при подключении к клемме 51 не указывает. Как следует, обрыв
находится меж этими клеммами. На рисунке видно, что в этот участок заходит
конечный выключатель ВК2 и провода, соединяющие его с клеммами шкафа
управления.

Пользуясь этим методом для выявления места обрыва цепи нужно строго
соблюдать правила электробезопасности: работать в диэлектрических перчатках и
галошах либо, стоя на изолирующей подставке, не дотрагиваться к контактам и
обнаженным проводникам.

При использовании для проверки контрольной лампы
принимают конструктивные меры против включения магнитного пускателя К2 и механизма поворота
крана. Для этого закрепляют якорь магнитного пускателя в положении Выключено.
Лампа в прохладном состоянии имеет маленькое сопротивление (в пару раз
наименьшее, чем уторящей лампы) и при подключении ее к клемме 31 появляется
замкнутая цепь (провод 27, контрольная лампа, катушка К2, провод 28), что
вызывает срабатывание пускателя К2. При использовании вольтметром пускатель не
может включиться, потому что обмотка вольтметра имеет огромное сопротивление.

Проверяя цепь для определения места обрыва, следует держать в голове, что у многих
кранов часть цепи работает на переменном токе, а часть - на неизменном. При проверке цепи неизменного тока клеммы
вольтметра (лампы) подключают к источнику неизменного тока, а при проверке цепи
переменного тока - к фазе переменного тока. Во время работы следует непременно
воспользоваться электронными схемами, потому что неверное включение лампы в фазу
переменного тока при проверке цепи, работающей на неизменном токе, может
привести к повреждению выпрямительных устройств.

При поиске места замыкания на корпус (пробоя изоляции) участок (с
предполагаемым пробоем) отсоединяют от источника тока, а вольтметр (лампу)
подключают к источнику тока и проверяемому участку. В обычном состоянии
отсоединенный участок изолирован от металлоконструкции крана и вольтметр (лампа)
ничего не покажет. При пробое вольтметр указывает напряжение, а лампа пылает.
Поочередно отсоединяя отдельные части проверяемого участка цепи, можно
отыскать поврежденное место.

Если, к примеру, в катушке К2 (см. рис. 1) пробило изоляцию, то при выключении
катушки от привода 28 и присоединении вольтметра к клеммам 27 и 51 (контакт В1-3
командоконтроллера разомкнут) вольтметр покажет напряжение.

Существенно эффективней и безопасней создавать проверку цепи при помощи
омметра либо пробника. Пробник состоит из милливольтметра с пределом измерения
0-75 мВ, поочередно соединенного с резистором R = 40 — 60 Ом и батарейкой 4,5
В от карманного фонарика. Выводы пробника А и В служат для подключения к клеммам
проверяемой цепи. Методика поиска места неисправности подобна описанной чуть повыше,
но кран отключают от наружной сети, потому что у омметра и пробника имеются свои
источники тока.

При использовании омметра либо пробника стопроцентно исключается возможность
поражения током, не считая того, с помощью их можно найти место недлинного
замыкания в проводах.

Цепи управления линейным контактором (цепи защиты) у кранов разных типов
выполнены по общему принципу, отличаются они только количеством поочередно
включенных аппаратов и имеют общие признаки неисправности. Всякую цепь защиты
можно условно поделить на три участка: участок с нулевыми контактами
контроллеров и кнопкой включения линейного контактора; участок, блокирующий
нулевые контакты контроллеров и кнопку при включении контактора и замыкании его
блок-контактов (цепь блокировки); общий участок, в который включены аварийные
выключатели, контакты наибольших реле и катушка линейного контактора.

Наружным признаком обрыва цепи каждого участка служит определенный нрав
работы линейного контактора. При обрыве цепи на первом участке линейный
контактор не врубается, когда жмут кнопку, но врубается, когда
поворачивают вручную подвижную часть контактора до замыкания блок-контактов. При
пробном включении контактора -вручную нужно принять последующие меры
безопасности: все контроллеры установить в нулевое положение; поворачивать
подвижную часть контактора или при помощи монтерского инструмента с
изолированными ручками, или в диэлектрических перчатках.

Если цепь оборвана на втором участке, линейный контактор врубается при
нажатии кнопки, но отпадает, когда кнопка ворачивается в обычное
положение.

Когда цепь оборвана на 3-ем участке, линейный контактор не врубается ни
от кнопки, ни при переводе его во включенное положение вручную.

Неисправности электродвигателей

Из различных обстоятельств неисправности
электродвигателей остановимся на более всераспространенных.

Куцее замыкание в обмотке ротора. Признак неисправности: включение
мотора происходит скачком, обороты мотора не зависят от позиции
контроллера. Для проверки отсоединяют ротор мотора от пускорегулирующего
сопротивления. Если при включении статора движок будет работать, обмотка
ротора закорочена.

Куцее замыкание в обмотке статора. Признак неисправности: движок при
включении не крутится, срабатывает наибольшая защита.

Обрыв одной из фаз статора при соединении мотора звездой. Признаки
неисправности: движок не делает крутящего момента и, как следует,
механизм не проворачивается. Чтоб найти неисправность, движок
отсоединяют от сети и каждую фазу в отдельности инспектируют контрольной лампой.
Для проверки употребляют низкое напряжение (12 В). Если обрыва нет, лампа будет
пылать полным накалом, а при проверке фазы, имеющей обрыв, лампа пылать не
будет.

Обрыв в цепи одной фазы ротора. Признак неисправности: движок крутится с
половинной скоростью и очень гудит. При обрыве фазы статора либо ротора у
мотора грузовой и стреловой лебедок может быть падение груза (стрелы)
независимо от направления включения контроллера.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!