Настройка оборудования и программного обеспечения

Определить все токи в цепи. Постоянный ток

Изложение методов расчета и анализа электрических цепей, как правило, сводится к нахождению токов ветвей при известных значениях ЭДС и сопротивлений.

Рассматриваемые здесь методы расчета и анализа электрических цепей постоянного тока пригодны и для цепей переменного тока.

2.1 Метод эквивалентных сопротивлений

(метод свертывания и развертывания цепи).

Этот метод применяется только для электрических цепей содержащих один источник питания. Для расчета, отдельные участки схемы, содержащие последовательные или параллельные ветви, упрощают, заменяя их эквивалентными сопротивлениями. Таким образом, цепь свертывается до одного эквивалентного сопротивления цепи подключенного к источнику питания.

Затем определяется ток ветви, содержащий ЭДС, и схема разворачивается в обратном порядке. При этом вычисляются падения напряжений участков и токи ветвей. Так, например, на схеме 2.1 А Сопротивления R 3 и R 4 включены последовательно. Эти два сопротивления можно заменить одним, эквивалентным

R 3,4 = R 3 + R 4

После такой замены получается более простая схема(Рис.2.1Б ).

Здесь следует обратить внимание на возможные ошибки в определении способа соединений сопротивлений. Например сопротивления R 1 и R 3 нельзя считать соединенными последовательно, также как сопротивления R 2 и R 4 нельзя считать соединенными параллельно, т. к. это не соответствует основным признакам последовательного и параллельного соединения.

Рис 2.1 К расчету электрической цепи методом

Эквивалентных сопротивлений.

Между сопротивлениями R 1 и R 2 , в точке В , имеется ответвление с током I 2 .поэтому ток I 1 Не будет равен току I 3 , таким образом сопротивления R 1 и R 3 нельзя считать включенными последовательно. Сопротивления R 2 и R 4 с одной стороны присоединены к общей точке D , а с другой стороны — к разным точкам В и С. Следовательно, напряжение, приложенное к сопротивлению R 2 и R 4 Нельзя считать включенными параллельно.

После замены сопротивлений R 3 и R 4 эквивалентным сопротивлением R 3,4 и упрощением схемы (Рис. 2.1 Б ), более наглядно видно, что сопротивления R 2 и R 3,4 соединены параллельно и их можно заменить одним эквивалентным, исходя из того, что при параллельном соединении ветвей общая проводимость равна сумме проводимостей ветвей:

GBD = G 2 + G 3,4 , Или = + Откуда

RBD =

И получить еще более простую схему (Рис 2.1,В ). В ней сопротивления R 1 , RBD , R 5 соединены последовательно. Заменив эти сопротивления одним, эквивалентным сопротивлением между точками A и F , получим простейшую схему (Рис 2.1, Г ):

RAF = R 1 + RBD + R 5 .

В полученной схеме можно определить ток в цепи:

I 1 = .

Токи в других ветвях нетрудно определить переходя от схемы к схеме в обратном порядке. Из схемы на рисунке 2.1 В Можно определить падение напряжения на участке B , D цепи:

UBD = I 1 ·RBD

Зная падение напряжения на участке между точками B и D можно вычислить токи I 2 и I 3 :

I 2 = , I 3 =

Пример 1. Пусть (Рис 2.1 А ) R 0 = 1 Ом; R 1 =5 Ом; R 2 =2 Ом; R 3 =2 Ом; R 4 =3 Ом; R 5 =4 Ом; Е =20 В. Найти токи ветвей, составить баланс мощностей.

Эквивалентное сопротивление R 3,4 Равно сумме сопротивлений R 3 и R 4 :

R 3,4 = R 3 + R 4 =2+3=5 Ом

После замены (Рис 2.1 Б ) вычислим эквивалентное сопротивление двух параллельных ветвей R 2 и R 3,4 :

RBD = ==1,875 Ом,

И схема еще упростится (Рис 2.1 В ).

Вычислим эквивалентное сопротивление всей цепи:

R Экв = R 0 + R 1 + RBD + R 5 =11,875 Ом.

Теперь можно вычислить общий ток цепи, т. е. вырабатываемый источником энергии:

I 1 = =1,68 А.

Падение напряжения на участке BD будет равно:

UBD = I 1 · RBD =1,68·1,875=3,15 В.

I 2 = = =1,05 А; I 3 ===0,63 А

Составим баланс мощностей:

Е· I1= I12 · (R0+ R1+ R5) + I22 · R2+ I32 · R3,4 ,

20·1,68=1,682·10+1,052·3+0,632·5 ,

33,6=28,22+3,31+1,98 ,

Минимальное расхождение обусловлено округлением при вычислении токов.

В некоторых схемах нельзя выделить сопротивлений включенных между собой последовательно или параллельно. В таких случаях лучше воспользоваться другими универсальными методами, которые можно применить для расчета электрических цепей любой сложности и конфигурации.

2.2 Метод законов Кирхгофа.

Классическим методом расчета сложных электрических цепей является непосредственное применение законов Кирхгофа. Все остальные методы расчета электрических цепей исходят из этих фундаментальных законов электротехники.

Рассмотрим применение законов Кирхгофа для определения токов сложной цепи (Рис 2.2) если ее ЭДС и сопротивления заданы.

Рис. 2.2. К расчету сложной электрической цепи для

Определения токов по законам Кирхгофа.

Число независимых токов схемы равно числу ветвей (в нашем случае m=6). Поэтому для решения задачи необходимо составить систему из шести независимых уравнений, совместно по первому и второму законам Кирхгофа.

Количество независимых уравнений составленных по первому закону Кирхгофа всегда на единицу меньше чем узлов, Т. к. признаком независимости является наличие в каждом уравнении хотя бы одного нового тока.

Так как число ветвей M всегда больше, чем узлов К , То недостающее количество уравнений составляется по второму закону Кирхгофа для замкнутых независимых контуров, Т. е. чтобы в каждое новое уравнение входила хотя бы одна новая ветвь.

В нашем примере количество узлов равно четырем – A , B , C , D , следовательно, составим только три уравнения по первому закону Кирхгофа, для любых трех узлов:

Для узла A: I1+I5+I6=0

Для узла B: I2+I4+I5=0

Для узла C: I4+I3+I6=0

По второму закону Кирхгофа нам нужно составить также три уравнения:

Для контура A , C ,В, А: I 5 · R 5 I 6 · R 6 I 4 · R 4 =0

Для контура D ,A ,В, D : I 1 · R 1 I 5 · R 5 I 2 · R 2 =Е1-Е2

Для контура D ,В, С, D : I 2 · R 2 + I 4 · R 4 + I 3 · R 3 =Е2

Решая систему из шести уравнений можно найти токи всех участков схемы.

Если при решении этих уравнений токи отдельных ветвей получатся отрицательными, то это будет указывать, что действительное направление токов противоположно произвольно выбранному направлению, но величина тока будет правильной.

Уточним теперь порядок расчета:

1) произвольно выбрать и нанести на схему положительные направления токов ветвей;

2) составить систему уравнений по первому закону Кирхгофа – количество уравнений на единицу меньше чем узлов;

3) произвольно выбрать направление обхода независимых контуров и составить систему уравнений по второму закону Кирхгофа;

4) решить общую систему уравнений, вычислить токи, и, в случае получения отрицательных результатов, изменить направления этих токов.

Пример 2 . Пусть в нашем случае (рис. 2.2.) R 6 = ∞ , что равносильно обрыву этого участка цепи (рис. 2.3). Определим токи ветвей оставшейся цепи. вычислим баланс мощностей, если E 1 =5 В, E 2 =15 B, R 1 =3 Ом, R 2 = 5 Ом, R 3 =4 Ом, R 4 =2 Ом, R 5 =3 Ом.

Рис. 2.3 Схема к решению задачи.

Решение. 1. Выберем произвольно направление токов ветвей, их у нас три: I 1 , I 2 , I 3 .

2. Составим только одно независимое уравнение по первому закону Кирхгофа, т. к. в схеме лишь два узла В и D .

Для узла В : I 1 + I 2 I 3

3. Выберем независимые контуры и направление их обхода. Пусть контуры ДАВД и ДВСД будем обходить по часовой стрелке:

E1-E2=I1(R1 + R5) — I2·R2,

E2=I2 · R2 + I3 · (R3 + R4).

Подставим значения сопротивлений и ЭДС.

I 1 + I 2 I 3 =0

I 1 +(3+3)- I 2 · 5=5-15

I 2 · 5+ I 3 (4+2)=15

Решив систему уравнений, вычислим токи ветвей.

I 1 =- 0,365А; I 2 = I 22 I 11 = 1,536А; I 3 =1,198А.

Как проверку правильности решения составим баланс мощностей.

Σ EiIi= Σ Iy2·Ry

E1·I1 + E2·I2 = I12·(R1 + R5) + I22·R2 + I32·(R3 + R4);

5(-0,365) + 15·1,536 = (-0,365)2·6 + 1,5632·5 + 1,1982·6

1,82 + 23,44 = 0,96 + 12,20 + 8,60

21,62 ≈ 21,78.

Расхождения незначительны, следовательно решение верно.

Одним из главных недостатков этого метода является большое количество уравнений в системе. Более экономичным при вычислительной работе является Метод контурных токов .

2.3 Метод контурных токов.

При расчете Методом контурных токов полагают, что в каждом независимом контуре течет свой (условный) Контурный ток . Уравнения составляют относительно контурных токов по второму закону Кирхгофа. Таким образом количество уравнений равно количеству независимых контуров.

Реальные токи ветвей определяют как алгебраическую сумму контурных токов каждой ветви.

Рассмотрим, например, схему рис. 2.2. Разобьем ее на три независимых контура: СВАС ; АВ D А ; ВС D В и условимся, что по каждому из них проходит свой контурный ток, соответственно I 11 , I 22 , I 33 . Направление этих токов выберем во всех контурах одинаковым по часовой стрелке, как показано на рисунке.

Сопоставляя контурные токи ветвей, можно установить, что по внешним ветвям реальные токи равны контурным, а по внутренним ветвям они равны сумме или разности контурных токов:

I1 = I22, I2 = I33 — I22, I3 = I33,

I4 = I33 — I11, I5 = I11 — I22, I6 = — I11.

Следовательно, по известным контурным токам схемы легко можно определить действительные токи ее ветвей.

Для определения контурных токов данной схемы достаточно составить только три уравнения для каждого независимого контура.

Составляя уравнения для каждого контура необходимо учесть влияние соседних контуров токов на смежные ветви:

I11(R5 + R6 + R4) — I22·R5 — I33·R4 = O,

I22(R1 + R2 + R5) — I11·R5 — I33·R2 = E1 — E2,

I 33 (R 2 + R 3 + R 4 ) — I 11 · R 4 I 22 · R 2 = E 2 .

Итак, порядок расчета методом контурных токов выполняется в следующей последовательности:

1. установить независимые контуры и выбрать направления в них контурных токов;

2. обозначить токи ветвей и произвольно дать им направления;

3. установить связь действительных токов ветвей и контурных токов;

4. составить систему уравнений по второму закону Кирхгофа для контурных токов;

5. решить систему уравнений, найти контурные токи и определить действительные токи ветвей.

Пример 3. Решим задачу (пример 2) методом контурных токов, исходные данные те же.

1. В задаче возможны только два независимых контура: выберем контуры АВ D А и ВС D В , и примем направления контурных токов в них I 11 и I 22 по часовой стрелке (рис. 2.3).

2. Действительные токи ветвей I 1 , I 2, I 3 и их направления также показаны на (рис 2.3).

3. связь действительных и контурных токов:

I 1 = I 11 ; I 2 = I 22 I 11 ; I 3 = I 22

4. Составим систему уравнений для контурных токов по второму закону Кирхгофа:

E1 — E2 = I11·(R1 + R5 + R2) — I22·R2

E2 = I22·(R2 + R4 + R3) — I11·R2;

5-15=11·I 11 -5·I 22

15=11·I 22 -5·I 11 .

Решив систему уравнений получим:

I 11 = -0,365

I 22 = 1,197, тогда

I 1 = -0,365; I 2 = 1,562; I 3 = 1,197

Как видим реальные значения токов ветвей совпадают с полученными значениями в примере 2.

2.4 Метод узлового напряжения (метод двух узлов).

Часто встречаются схемы содержащие всего два узла; на рис. 2.4 изображена одна из таких схем.

Рис 2.4. К расчету электрических цепей методом двух узлов.

Наиболее рациональным методом расчета токов в них является Метод двух узлов.

Под Методом двух узлов понимают метод расчета электрических цепей, в котором за искомое напряжение (с его помощью затем определяют токи ветвей) принимают напряжение между двумя узлами А и В схемы – U АВ .

Напряжение U АВ может быть найдено из формулы:

U АВ =

В числителе формулы знак «+», для ветви содержащей ЭДС, берется если направление ЭДС этой ветви направлено в сторону повышения потенциала, и знак «-» если в сторону понижения. В нашем случае, если потенциал узла А принять выше потенциала узла В (потенциал узла В принять равным нулю), Е1 G 1 , берется со знаком «+», а Е2· G 2 со знаком «-»:

U АВ =

Где G – проводимости ветвей.

Определив узловое напряжение, можно вычислить токи в каждой ветви электрической цепи:

I К =(Ек- U АВ ) G К .

Если ток имеет отрицательное значение, то действительное его направление является противоположным обозначенным на схеме.

В этой формуле, для первой ветви, т. к. ток I 1 совпадает с направлением Е1 , то ее значение принимается со знаком плюс, а U АВ со знаком минус, т. к. направлено навстречу току. Во второй ветви и Е2 и U АВ направлены навстречу току и берутся со знаком минус.

Пример 4 . Для схемы рис. 2.4 если Е1= 120В, Е2=5Ом, R1=2Ом, R2=1Ом, R3=4Ом, R4=10Ом.

UАВ=(120·0,5-50·1)/(0,5+1+0,25+0,1)=5,4 В

I1=(E1-UАВ)·G1= (120-5,4)·0,5=57,3А;

I2=(-E2-UАВ)·G2 = (-50-5,4)·1 = -55,4А;

I3=(О-UАВ)·G3 = -5,4·0,25 = -1,35А;

I4=(О-UАВ)·G4 = -5,4·0,1 = -0,54А.

2.5. Нелинейные цепи постоянного тока и их расчет.

До сих пор мы рассматривали электрические цепи, параметры которых (сопротивления и проводимости) считались не зависящими от величины и направления проходящего по ним тока или приложенного к ним напряжения.

В практических условиях большинство встречающихся элементов имеют параметры зависящие от тока или напряжения, вольт-амперная характеристика таких элементов имеет нелинейный характер (рис. 2.5),такие элементы называются Нелинейными . Нелинейные элементы широко используются в различных областях техники (автоматики, вычислительной техники и других).

Рис. 2.5. Вольт-амперные характеристики нелинейных элементов:

1 — полупроводникового элемента;

2 — термосопротивления

Нелинейные элементы позволяют реализовать процессы которые невозможны в линейных цепях. Например, стабилизировать напряжение, усиливать ток и другие.

Нелинейные элементы бывают управляемыми и неуправляемыми. Неуправляемые нелинейные элементы работают без влияния управляющего воздействия (полупроводниковые диоды, термосопротивления и другие). Управляемые элементы работают под влиянием управляющего воздействия (тиристоры, транзисторы и другие). Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику; управляемые – семейство характеристик.

Расчет электрических цепей постоянного тока чаще всего производят графическими методами, которые применимы при любом виде вольт-амперных характеристик.

Последовательное соединение нелинейных элементов.

На рис. 2.6 приведена схема последовательного соединения двух нелинейных элементов, а на рис. 2.7 их вольтамперные характеристики – I (U 1 ) и I (U 2 )

Рис. 2.6 Схема последовательного соединения

Нелинейных элементов.

Рис. 2.7 Вольтамперные характеристики нелинейных элементов.

Построим вольт-амперную характеристику I (U ), выражающую зависимость тока I в цепи от приложенного к ней напряжения U . Так как ток обоих участков цепи одинаков, а сумма напряжений на элементах равна приложенному (рис. 2.6) U = U 1 + U 2 , то для построения характеристики I (U ) достаточно просуммировать абсциссы заданных кривых I (U 1 ) и I (U 2 ) для определенных значений тока. Пользуясь характеристиками (рис. 2.6) можно решить различные для этой цепи задачи. Пусть, например, задана величина приложенного к току напряжения U и требуется определить ток в цепи и распределение напряжений на ее участках. Тогда на характеристике I (U ) отмечаем точку А соответствующую приложенному напряжению U и проводим от нее горизонталь пересекающую кривые I (U 1 ) и I (U 2 ) до пересечения с осью ординат (точка D ), которая показывает величину тока в цепи, а отрезки В D и С D величину напряжения на элементах цепи. И наоборот по заданному току можно определить напряжения как общее, так и на элементах.

Параллельное соединения нелинейных элементов.

При параллельном соединении двух нелинейных элементов (рис. 2.8) с заданными вольт-амперными характеристиками в виде кривых I 1 (U ) и I 2 (U ) (рис. 2.9) напряжение U является общим, а ток I в неразветвленной части цепи равен сумме токов ветвей:

I = I 1 + I 2

Рис. 2.8 Схема параллельного соединения нелинейных элементов.

Поэтому для получения общей характеристики I(U) достаточно для произвольных значений напряжения U на рис. 2.9 просуммировать ординаты характеристик отдельных элементов.

Рис. 2.9 Вольт-амперные характеристики нелинейных элементов.

Сложной электрической цепью называют цепь с несколькими замкнутыми контурами, с любым размещением в ней источников питания и потребителей, которую нельзя свести к сочетанию последовательных и параллельных соединений.

Основными законами для расчета цепей наряду с законом Ома являются два закона Кирхгофа, пользуясь которыми, можно найти распределение токов и напряжений на всех участках любой сложной цепи.

В § 2-15 мы ознакомились с одним методом расчета сложных цепей, методом наложения.

Сущность этого метода заключается в том, что ток в какой-либо ветви является алгебраической суммой токов, создаваемых в ней всеми поочередно действующими э. д. с. цепи.

Рассмотрим расчет сложной цепи методом узловых и контурных уравнений или уравнений по законам Кирхгофа.

Для нахождения токов во всех ветвях цепй необходимо знать сопротивления ветвей, а также величины и направления всех э. д. с.

Перед составлением уравнений по законам Кирхгофа следует произвольно задаться направлениями токов в ветвях, показав их на схеме стрелками. Если выбранное направление тока в какой-либо ветви противоположно действительному, то после решения уравнений этот ток получается со знаком минус.

Число необходимых уравнений равно числу неизвестных токов; число уравнений, составляемых по первому закону Кирхгофа, должно быть на единицу меньше числа узлов цепи, остальные уравнения составляются по второму закону Кирхгофа. При составлении уравнений по второму закону Кирхгофа следует выбирать наиболее простые контуры, причем каждый из них должен содержать хотя бы одну ветвь, не входившую в ранее составленные уравнения.

Расчет сложной цепи с применением двух уравнений Кирхгофа рассмотрим на примере.

Пример 2-12. Вычислить токи во всех ветвях цепи рис. 2-11, если э. д. с. источников , а сопротивления ветвей .

Внутренними сопротивлениями источников пренебречь.

Рис. 2-11. Сложная электрическая цепь с двумя источниками питания.

Выбранные произвольно направления токов в ветвях показаны на рис. 2-11.

Так как число неизвестных токов три, то необходимо составить три уравнения.

При двух узлах цепи необходимо одио узловое уравнение. Напишем его для точки В:

4 Второе уравнение напишем, обходя по направлению движения часовой стрелки контур АБВЖЗА,

Третье уравнение напишем, обходя по направлению движения часовой стрелки контур АГВЖЗА,

Заменив в уравнениях (2-49) и (2-50) буквенные обозначения числовыми значениями, получим:

Заменив в последнем уравнении ток его выражением уравнения (2-48), получим;

Умножив уравнение (2-52а) на 0,3 и сложив с уравнением (2-51), получим.

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Электрические цепи

– это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

– это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.


Классификация электрических цепей

По назначению электрические цепи бывают:

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.


Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

В цепи постоянного тока действуют постоянные напряжения, протекают постоянные токи и присутствуют только резистивные элементы (сопротивления).

Идеальным источником напряжения называют источник, напряжение на зажимах которого, создаваемое внутренней электродвижущей силой (ЭДС ), на зависит от формируемого им в нагрузке тока (рис. 6.1а). При этом имеет место равенство . Вольтамперная характеристика идеального источника напряжения показана на рис. 6.1б.

Идеальным источником тока называют источник, который отдает в нагрузку ток, не зависящий от напряжения на зажимах источника, Рис. 6.2а. Его вольтамперная характеристика показана на рис. 6.2б.

В сопротивлении связь между напряжением и током определяется законом Ома в виде

Пример электрической цепи показан на рис. 6.3. В ней выделяются ветви , состоящие из последовательного соединения нескольких элементов (источника E и сопротивления ) или одного элемента ( и ) и узлы - точки соединения трех и более ветвей, отмеченные жирными точками. В рассмотренном примере имеется ветви и узла.

Кроме того, в цепи выделяются независимые замкнутые контуры , не содержащие идеальные источники тока. Их число равно . В примере на рис. 6.3 их число , например, контуры с ветвями E и , показанные на рис. 6.3 овалами со стрелками, указывающими положительное направление обхода контура.

Связь токов и напряжений в цепи определяется законами Кирхгофа.

Первый закон Кирхгофа : алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю,

Втекающие в узел токи имеют знак плюс, а вытекающие минус.

Второй закон Кирхгофа : алгебраическая сумма напряжений на элементах замкнутого независимого контура равна алгебраической сумме ЭДС идеальных источников напряжения, включенных в этом контуре,

Напряжения и ЭДС берутся со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в противном случае используется знак минус.

Для приведенного на рис. 6.3 примера по закону Ома получим подсистему компонентных уравнений

По законам Кирхгофа подсистема топологических уравнений цепи имеет вид

Расчет на основе закона Ома

Этот метод удобен для расчета сравнительно простых цепей с одним источником сигнала . Он предполагает вычисление сопротивлений участков цепи, для которых известна вели-

чина тока (или напряжения), с последующим определением неизвестного напряжения (или тока). Рассмотрим пример расчета цепи, схема которой приведена на рис. 6.4, при токе идеального источника А и сопротивлениях Ом, Ом, Ом. Необходимо определить токи ветвей и , а также напряжения на сопротивлениях , и .


Известен ток источника , тогда можно вычислить сопротивление цепи относительно зажимов источника тока (параллельного соединения сопротивления и последовательно соединен-

Рис. 6.4 ных сопротивлений и ),

Напряжение на источнике тока (на сопротивлении ) равно

Затем можно найти токи ветвей

Полученные результаты можно проверить с помощью первого закона Кирхгофа в виде . Подставляя вычисленные значения, получим А, что совпадает с величиной тока источника.

Зная токи ветвей, нетрудно найти напряжения на сопротивлениях (величина уже найдена)

По второму закону Кирхгофа . Складывая полученные результаты, убеждаемся в его выполнении.

Расчет цепи по уравнениям Кирхгофа

Проведем расчет токов и напряжений в цепи, показанной на рис. 6.3 при и . Цепь описывается системой уравнений (6.4) и (6.5), из которой для токов ветвей получим

Из первого уравнения выразим , а из третьего

Тогда из второго уравнения получим

и, следовательно

Из уравнений закона Ома запишем

Например, для цепи на рис. 6.3 в общем виде получим

Подставляя в левую часть равенства (6.11) полученные ранее выражения для токов, получим

что соответствует правой части выражения (6.11).

Аналогичные расчеты можно проделать и для цепи на рис. 6.4.

Условие баланса мощностей позволяет дополнительно контролировать правильность расчетов.

3.1. Модель цепи постоянного тока

Если в электрической цепи действуют постоянные напряжения и протекают постоянные токи, то модели реактивных элементов L и C существенно упрощаются.

Модель сопротивления остается прежней и связь между напряжением и током определяется законом Ома в виде

В идеальной индуктивности мгновенные значения напряжения и тока связаны соотношением

Аналогично в емкости связь между мгновенными значениями напряжения и тока определяется в виде

Таким образом, в модели цепи постоянного тока присутствуют только сопротивления (модели резисторов) и источники сигнала, а реактивные элементы (индуктивности и емкости) отсутствуют.

3.2. Расчет цепи на основе закона Ома

Этот метод удобен для расчета сравнительно простых цепей с одним источником сигнала . Он предполагает вычисление сопротивлений участков цепи, для которых известна величина тока (или напряжения), с последующим определением неизвестного напряжения (или тока). Рассмотрим пример расчета цепи, схема которой приведена на рис. 3.1, при токе идеального источника А и сопротивлениях Ом, Ом, Ом. Необходимо определить токи ветвей и , а также напряжения на сопротивлениях , и .

Известен ток источника , тогда можно вычислить сопротивление цепи относительно зажимов источника тока (параллельного соединения сопротивления и последовательно соединен-

Рис. 3.1. ных сопротивлений и ),

Тогда напряжение на источнике тока (на сопротивлении ) равно

Затем можно найти токи ветвей

Полученные результаты можно проверить с помощью первого закона Кирхгофа в виде . Подставляя вычисленные значения, получим А, что совпадает с величиной тока источника.

Зная токи ветвей, нетрудно найти напряжения на сопротивлениях (величина уже найдена)

По второму закону Кирхгофа . Складывая полученные результаты, убеждаемся в его выполнении.

3.3. Общий метод расчета цепи на основе законов Ома

и Кирхгофа

Общий метод расчета токов и напряжений в электрической цепи на основе законов Ома и Кирхгофа пригоден для расчета сложных цепей с несколькими источниками сигнала.

Расчет начинается с задания обозначений и положительных направлений токов и напряжений для каждого элемента (сопротивления) цепи.

Система уравнений включает в себя подсистему компонентных уравнений, связывающих по закону Ома токи и напряжения в каждом элементе (сопротивлении) и подсистему



топологических уравнений, построенную на основе первого и второго законов Кирхгофа.

Рассмотрим расчет простой цепи из предыдущего примера, показанной на рис. 3.1, при тех же исходных данных.

Подсистема компонентных уравнений имеет вид

В цепи имеется два узла () и две ветви, не содержащие идеальных источников тока (). Следовательно, необходимо записать одно уравнение () по первому закону Кирхгофа,

и одно уравнение второго закона Кирхгофа (),

которые и образуют подсистему топологических уравнений.

Уравнения (3.4)-(3.6) являются полной системой уравнений цепи. Подставляя (3.4) в (3.6), получим

а, объединив (3.5) и (3.7), получим два уравнения с двумя неизвестными токами ветвей,

Выражая из первого уравнения (3.8) ток и подставляя его во второе, найдем значение тока ,

а затем найдем А. По вычисленным токам ветвей из компонентных уравнений (3.4) определим напряжения. Результаты расчета совпадают с полученными ранее в подразделе 3.2.

Рассмотрим более сложный пример расчета цепи в схеме, показанной на рис. 3.2, с параметрами Ом, Ом, Ом, Ом, Ом, Ом,

Цепь содержит узла (их номера указаны в кружках) и ветвей, не содержащих идеальные источники тока. Система компонентных уравнений цепи имеет вид

По первому закону Кирхгофа необходимо записать уравнения (узел 0 не используется),

По второму закону Кирхгофа составляется уравнения для трех независимых контуров, отмеченных на схеме окружностями со стрелками (внутри указаны номера контуров),

Подставляя (3.11) в (3.13), совместно с (3.12) получим систему шести уравнений вида

Из второго и третьего уравнений выразим

а из первого , тогда подставив и , получим . Подставляя токи , и в уравнения второго закона Кирхгофа, запишем систему из трех уравнений

которую после приведения подобных запишем в виде

Обозначим

и из третьего уравнения системы (3.15) запишем

Подставляя полученное значение в первые два уравнения (3.15), получим систему из двух уравнений вида

Из второго уравнения (3.18) получим

тогда из первого уравнения найдем ток

Вычислив , из (3.19) найдем , из (3.17) вычислим , а затем из уравнений подстановки найдем токи , , .

Как видно, аналитические вычисления достаточно громоздки, и для численных расчетов целесообразней использовать современные программные пакеты, например, MathCAD2001. Пример программы показан на рис. 3.3.

Матрица - столбец содержит значения токов А, А, А. Остальные

токи вычисляются согласно уравнениям (3.14) и равны

А, А, А. Вычисленные значения токов совпадают с полученными по приведенным выше формулам.

Общий метод расчета цепи по уравнениям Кирхгофа приводит к необходимости решения линейных алгебраических уравнений. При большом числе ветвей возникают математические и вычислительные трудности. Это означает, что целесообразно искать методы расчета, требующие составления и решения меньшего числа уравнений .

3.4. Метод контурных токов

Метод контурных токов базируется науравнениях второго закона Кирхгофа и приводит к необходимости решения уравнений, - число всех ветвей, в том числе и содержащих идеальные источники тока.

В цепи выбираются независимых контуров и для каждого -го из них вводится кольцевой (замкнутый) контурный ток (двойная индексация позволяет отличать кон-

турные токи от токов ветвей). Через контурные токи можно выразить все токи ветвей и для каждого независимого контура записать уравнения второго закона Кирхгофа. Система уравнений содержит уравнений, из которых определяются все контурные токи. По найденным контурным токам находятся токи или напряжения ветвей (элементов).

Рассмотрим пример цепи на рис. 3.1. На рис 3.4 приведена схема с указанием обозначений и положительных направлений двух контурных токов и ( , , ).

Рис. 3.4 Через ветвь проте-

кает только контурный ток и его направление совпадает с , поэтому ток ветви равен

В ветви протекают два контурных тока, ток совпадает по направлению с , а ток имеет противоположное направление, следовательно

Для контуров, не содержащих идеальные источники тока , составляем уравнения второго закона Кирхгофа с использованием закона Ома, в данном примере записывается одно уравнение

Если в контур включен идеальный источник тока , то для него

уравнение второго закона Кирхгофа не составляется , а его контурный ток равен току источника с учетом их положительных направлений, в рассматриваемом случае

Тогда система уравнений принимает вид

В результате подстановки второго уравнения в первое получим

тогда ток равен

а ток А. Из (3.21) А, а из (3.22) соответственно А, что полностью совпадает с полученными ранее результатами. При необходимости по найденным значениям токов ветвей по закону Ома можно вычислить напряжения на элементах цепи.

Рассмотрим более сложный пример цепи на рис. 3.2, схема которой с заданными контурными токами показана на рис. 3.5. В этом случае число ветвей , количество узлов , тогда число независимых контуров и уравнений по методу контурных токов равно . Для токов ветвей можно записать

Первые три контура не содержат идеальных источников тока, тогда с учетом (3.28) и использованием закона Ома для них можно записать уравнения второго закона Кирхгофа,

В четвертом контуре присутствует идеальный источник тока, поэтому для него уравнение второго закона Кирхгофа не составляется, а контурный ток равен току источника (они совпадают по направлению),

Подставляя (3.30) в систему (3.29), после преобразования получим три уравнения для контурных токов в виде

Систему уравнений (3.31) можно решить аналитически (например, методом подстановки – проделайте это ), получив формулы для контурных токов, а затем из (3.28) определить токи ветвей. Для численных расчетов удобно использовать пакет программ MathCAD, пример программы показан на рис. 3.6. Результаты вычислений совпадают с расчетами, приведенными на рис. 3.3. Как видно, метод контурных токов требует составления и решения меньшего числа уравнений по сравнению с общим методом расчета по уравнениям Кирхгофа.

3.5. Метод узловых напряжений

Метод узловых напряжений базируется на первом законе Кирхгофа, при этом число уравнений равно .

В цепи выделяются все узлов и один из них выбирается в качестве базисного , которому присваивается нулевой потенциал. Потенциалы (напряжения) … остальных узлов отсчитываются от базисного, их положительные направления обычно выбираются стрелкой в базисный узел. Через узловые напряжения с использованием закона Ома и второго закона Кирхгофа выражаются токи всех ветвей

и для узлов записываются уравнения первого закона Кирхгофа.

Рассмотрим пример цепи, показанной на рис. 3.1, для метода узловых напряжений ее схема показана на рис. 3.7. Нижний узел обозначен как базисный (для этого используется символ «земля» - точка нулевого потенциала), напряжение верхнего узла относительно базисного обо-

Рис. 3.7 значено как . Выразим через

него токи ветвей

По первому закону Кирхгофа с учетом (3.32) запишем единственное уравнение метода узловых напряжений (),

Решая уравнение, получим

а из (3.32) определим токи ветвей

Полученные результаты совпадают с полученными рассмотренными ранее методами.

Рассмотрим более сложный пример цепи, показанной на рис. 3.2 при тех же исходных данных, ее схема показана на рис. 3.8. В цепи узла, нижний выбран базисным, а три остальные обозначены номерами в кружках. Введены

положительные на- Рис. 3.8

правления и обозна-

чения узловых напряжений , и .

По Закону Ома с использованием второго закона Кирхгофа определим токи ветвей,

По первому закону Кирхгофа для узлов с номерами 1, 2 и 3 необходимо составить три уравнения,

Подставляя (3.36) в (3.37), получим систему уравнений метода узловых напряжений,

После преобразования и приведения подобных получим

Программа расчета узловых напряжений и токов ветвей приведена на рис. 3.9. Как видно, полученные результаты совпадают с полученными ранее другими методами расчета.

Проведите аналитический расчет узловых напряжений, получите формулы для токов ветвей и вычислите их значения.

3.6. Метод наложения

Метод наложения заключается в следующем.

Расчет проводится следующим образом. В цепи, содержащей несколько источников, поочередно выбирается каждый из них, а остальные отключаются. При этом образуются цепи с одним источником, число которых равно количеству источников в исходной цепи. В каждой из них проводится расчет искомого сигнала, а результирующий сигнал определяется их суммой. В качестве примера рассмотрим расчет тока в цепи, показанной на рис. 3.2, ее схема показана на рис. 3.10а.

При выключении идеального источника тока (его цепь разрывается) получается цепь, показанная на рис. 3.9б, в которой любым из рассмотренных методов определяется ток . Затем выключается идеальный источник напряжения (он заменяется коротким замыканием) и получается цепь, показанная

на рис. 3.9а, в которой находится ток . Искомый ток равен

Проведите аналитические и численные расчеты самостоятельно , сравните с полученными ранее результатами, например, (3.20).

3.7. Сравнительный анализ методов расчета

Метод расчета, основанный на законе Ома, пригоден для сравнительно простых цепей с одним источником. Его нельзя использовать для анализа цепей сложной структуры, например, мостового типа вида рис.3.9.

Общий метод расчета цепи на основе уравнений законов Ома и Кирхгофа универсален, но требует составления и решения системы из уравнений, которая легко преобразуется в систему из уравнений. При большом числе ветвей резко возрастают вычислительные затраты, особенно при необходимости аналитических расчетов.

Методы контурных токов и узловых напряжений более эффективны, так как приводят к системам с меньшим числом уравнений, равным соответственно и . При условии

метод контурных токов эффективнее, а иначе целесообразно применять метод узловых напряжений.

Метод наложения удобен, когда при отключении источников происходит резкое упрощение цепи.

Задание 3.5. Общим методом расчета, методами контурных токов и узловых напряжений определите в цепи рис. 3.14 напряжение при мА кОм, кОм, кОм, кОм, кОм. Проведите сравнительный анализ

методов расчета. Рис. 3.14

4. ГАРМОНИЧЕСКИЕ ТОКИ И НАПРЯЖЕНИЯ

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!