Настройка оборудования и программного обеспечения

На что влияет количество ядер процессора? Многоядерный процессор.

Многие люди при покупке процессора стараются выбрать что-нибудь покруче, с несколькими ядрами и большой тактовой частотой. Но при этом мало кто знает, на что влияет количество ядер процессора в действительности. Почему, например, обычный и простенький двухъядерник может оказаться быстрее четырехядерника или тот же "проц" с 4 ядрами будет быстрее "проца" с 8 ядрами. Это довольно интересная тема, в которой определенно стоит разобраться более детально.

Вступление

Прежде чем начать разбираться, на что влияет количество ядер процессора, хотелось бы сделать небольшое отступление. Еще несколько лет назад разработчики ЦП были уверены в том, что технологии производства, которые так стремительно развиваются, позволят выпускать "камни" с тактовыми частотами до 10 Ггц, что позволит пользователям забыть о проблемах с плохой производительностью. Однако успех достигнут не был.

Как бы ни развивался техпроцесс, что "Интел", что "АМД" уперлись в чисто физические ограничения, которые попросту не позволяли выпускать "процы" с тактовой частотой до 10 Ггц. Тогда и было принято решение сфокусироваться не на частотах, а на количестве ядер. Таким образом, началась новая гонка по производству более мощных и производительных процессорных "кристаллов", которая продолжается и по сей день, но уже не столь активно, как это было на первых порах.

Процессоры Intel и AMD

На сегодняшний день "Интел" и "АМД" являются прямыми конкурентами на рынке процессоров. Если посмотреть на выручку и продажи, то явное преимущество будет на стороне "синих", хотя в последнее время "красные" стараются не отставать. У обоих компаний имеется хороший ассортимент готовых решений на все случаи жизни - от простого процессора с 1-2 ядрами до настоящих монстров, у которых количество ядер переваливает за 8. Обычно подобные "камни" используются на специальных рабочих "компах", которые имеют узкую направленность.

Intel

Итак, на сегодняшний день у компании Intel успехом пользуются 5 видов процессоров: Celeron, Pentium, и i7. Каждый из этих "камней" имеет разное количество ядер и предназначенные для разных задач. Например, Celeron имеет всего 2 ядра и используется в основном на офисных и домашних компьютерах. Pentium, или, как его еще называют, "пенек", также используется в дому, но уже имеет гораздо лучшую производительность, в первую очередь за счет технологии Hyper-Threading, которая "добавляет" физическим двум ядрам еще два виртуальных ядра, которые называют потоками. Таким образом, двухъядерный "проц" работает как самый бюджетный четырехъядерник, хотя это не совсем корректно сказано, но основная суть именно в этом.

Что же касается линейки Core, то тут примерно схожая ситуация. Младшая модель с цифрой 3 имеет 2 ядра и 2 потока. Линейка постарше - Core i5 - имеет уже полноценные 4 или 6 ядер, но лишена функции Hyper-Threading и дополнительных потоков не имеет, кроме как 4-6 стандартных. Ну и последнее - core i7 - это топовые процессоры, которые, как правило, имеют от 4 до 6 ядер и в два раза больше потоков, т. е., например, 4 ядра и 8 потоков или 6 ядер и 12 потоков.

AMD

Теперь стоит сказать про AMD. Список "камушков" от данной компании огромен, смысла перечислять все нет, поскольку большинство из моделей уже попросту устарели. Стоит, пожалуй, отметить новое поколение, которое в некотором смысле "копирует" "Интел" - Ryzen. В данной линейке также присутствуют модели с номерами 3, 5 и 7. Главное отличие от "синих" у Ryzen заключается в том, что самая младшая модель уже сразу предоставляет полноценные 4 ядра, а у старшей их не 6, а целых восемь. Кроме этого, и количество потоков меняется. Ryzen 3 - 4 потока, Ryzen 5 - 8-12 (в зависимости от кол-ва ядер - 4 или 6) и Ryzen 7 - 16 потоков.

Стоит упомянуть и о еще одной линейке "красных" - FX, которая появилась в 2012 году, и, по сути, данная платформа уже считается устаревшей, но благодаря тому, что сейчас все больше и больше программ и игр начинает поддерживать многопоточность, линейка Vishera вновь обрела популярность, которая наряду с низкими ценами только растет.

Ну а что касается споров касательно частоты процессора и количества ядер, то, по сути, правильнее смотреть в сторону второго, поскольку с тактовыми частотами уже давно все определились, и даже топовые модели от "Интел" работают на номинальных 2. 7, 2. 8, 3 Ггц. Помимо этого, частоту всегда можно поднять при помощи оверклокинга, но в случае с двухъядерником это не даст особого эффекта.

Как узнать сколько ядер

Если кто-то не знает, как определить количество ядер процессора, то сделать это можно легко и просто даже без скачивания и установки отдельных специальных программ. Достаточно лишь зайти в "Диспетчер устройств" и нажать на маленькую стрелочку рядом с пунктом "Процессоры".

Получить более подробную информацию о том, какие технологии поддерживает ваш "камень", какая у него тактовая частота, номер его ревизии и многое другое можно при помощи специальной и маленькой программки CPU-Z. Скачать ее можно бесплатно на официальном сайте. Есть версия, которая не требует установки.

Преимущество двух ядер

В чем может быть преимущество двухъядерного процессора? Много в чем, например, в играх или приложениях, при разработке которых основным приоритетом была однопоточная работа. Взять хотя бы для примера игру Wold of Tanks. Самые обычные двухъядерники типа Pentium или Celeron будут выдавать вполне приличный результат по производительности, в то время как какой-нибудь FX от AMD или INTEL Core задействуют гораздо больше своих возможностей, а итог будет примерно таким же.

Чем лучше 4 ядра

Чем 4 ядра могут быть лучше двух? Лучшей производительностью. Четырехъядерные "камни" рассчитаны уже на более серьезную работу, где простые "пеньки" или "селероны" попросту не справятся. Отличным примером тут послужит любая программа по работе с 3D-графикой, например 3Ds Max или Cinema4D.

Во время процесса рендеринга данные программы задействуют максимум ресурсов компьютера, включая оперативную память и процессор. Двухъядерные ЦП будут очень сильно отставать по времени обработки рендера, и чем сложнее будет сцена, тем больше времени им потребуется. А вот процессоры с четырьмя ядрами справятся с данной задачей гораздо быстрее, поскольку им на помощь придут еще и дополнительные потоки.

Конечно, можно взять и какой-нибудь бюджетный "процик" из семейства Core i3, например, модель 6100, но 2 ядра и 2 дополнительных потока все равно будут уступать полноценному четырехядернику.

6 и 8 ядер

Ну и последний сегмент многоядерников - процессоры с шестью и восемью ядрами. Их основное предназначение, в принципе, точно такое же, как и у ЦП выше, только вот нужны они там, где обычные "четверки" не справляются. Кроме этого, на базе "камней" с 6 и 8 ядрами строят полноценные профильные компьютеры, которые будут "заточены" под определенную деятельность, например, монтаж видео, 3Д-программы для моделирования, рендеринг готовых тяжелых сцен с большим количеством полигонов и объектов и т. д.

Помимо этого, такие многоядерники очень хорошо себя показывают в работе с архиваторами или в приложениях, где нужны хорошие вычислительные возможности. В играх, которые оптимизированы под многопоточность, равных таких процессорам нет.

На что влияет количество ядер процессора

Итак, на что же еще может влиять количество ядер? В первую очередь на повышение энергопотребления. Да, как бы это ни прозвучало удивительно, но это так и есть. Особо переживать не стоит, потому как в повседневной жизни данная проблема, если можно так выразиться, заметна не будет.

Второе - это нагрев. Чем больше ядер, тем лучше нужна система охлаждения. Поможет измерить температуру процессора программа, которая называется AIDA64. При запуске нужно нажать на "Компьютер", а затем выбрать "Датчики". Следить за температурой процессора нужно, потому как если он будет постоянно перегреваться или работать на слишком высоких температурах, то через какое-то время он просто сгорит.

Двухъядерники незнакомы с такой проблемой, потому как не обладают слишком высокой производительностью и тепловыделением соответственно, а вот многоядерники - да. Самыми "горячими" считаются камни от AMD, особенно серии FX. Например, возьмем модель FX-6300. Температура процессора в программе AIDA64 находится в отметке около 40 градусов и это в режиме простоя. При нагрузке цифра будет расти и если случится перегрев, то комп выключится. Так что, покупая многоядерник, нужно не забывать о кулере.

На что влияет количество ядер процессора еще? На многозадачность. Двухъядерные"процы" не смогут обеспечить стабильную производительность при работе в двух, трех и более программ одновременно. Самый простой пример - стримеры в интернете. Помимо того, что они играют в какую-нибудь игру на высоких настройках, у них параллельно запущена программа, которая позволяет транслировать игровой процесс в интернет в режиме онлайн, работает и интернет-браузер с несколькими открытыми страницами, где игрок, как правило, читает комментарии смотрящих его людей и следит за прочей информацией. Обеспечить должную стабильность может даже далеко не каждый многоядерник, не говоря уже о двух- и одноядерных процессорах.

Также стоит сказать пару слов о том, что у многоядерных процессоров есть очень полезная вещь, которая называется "Кеш третьего уровня L3". Этот кеш имеет определенный объем памяти, в который постоянно записывается различная информация о запущенных программах, выполненных действиях и т. д. Нужно это все для того, чтобы увеличить скорость работы компьютера и его быстродействие. Например, если человек часто пользуется фотошопом, то эта информация сохранится в памяти каша, и время на запуск и открытие программы значительно сократиться.

Подведение итогов

Подводя итог разговора о том, на что влияет количество ядер процессора, можно прийти к одному простому выводу: если нужна хорошая производительность, быстродействие, многозадачность, работа в тяжелых приложениях, возможность комфортно играть в современные игры и т. д., то ваш выбор - процессор с четырьмя ядрами и больше. Если же нужен простенький "комп" для офиса или домашнего пользования, который будет использоваться по минимуму, то 2 ядра - это то что нужно. В любом случае, выбирая процессор, в первую очередь нужно проанализировать все свои потребности и задачи, и только после этого рассматривать какие-либо варианты.

Введение

Начинаем знакомство с двухъядерными процессорами для настольных компьютеров. В этом обзоре вы найдёте всё о процессоре с двумя ядрами от AMD: общую информацию, тестирование производительности, разгон и сведения о энергопотреблении и тепловыделении.

Время двухъядерных процессоров пришло. В самое ближайшее время процессоры, оснащённые двумя вычислительными ядрами, начнут активное проникновение в настольные компьютеры. К концу следующего года большинство новых PC должно быть основано именно на CPU с двумя ядрами.
Столь сильное рвение производителей по внедрению двухъядерных архитектур объясняется тем, что иные методы для наращивания производительности себя уже исчерпали. Рост тактовых частот даётся очень тяжело, а увеличение скорости шины и размера кэш-памяти не приводит к ощутимому результату.
В то же время совершенствование 90 нм технологического процесса дошло да той точки, когда производство гигантских кристаллов с площадью порядка 200 кв. мм стало рентабельным. Именно этот факт дал возможность производителям CPU начать кампанию по внедрению двухъядерных архитектур.

Итак, сегодня, 9 мая 2005 года, вслед за компанией Intel, предварительно представляет свои двухъядерные процессоры для настольных систем и компания AMD. Впрочем, как и в случае с двухъядерными процессорами Smithfield (Intel Pentium D и Intel Extreme Edition), речь о начале поставок пока не идёт, они начнутся несколько позднее. В данный момент AMD даёт нам возможность лишь предварительно познакомиться со своими перспективными предложениями.
Линейка двухъядерных процессоров от AMD получила название Athlon 64 X2. Это наименование отражает как тот факт, что новые двухъядерные CPU имеют архитектуру AMD64, так и то, что в них присутствует два вычислительных ядра. Вместе с названием, процессоры с двумя ядрами для настольных систем получили и собственный логотип:


Семейство Athlon 64 X2 на момент его появления на прилавках магазинов будет включать четыре процессора с рейтингами 4200+, 4400+, 4600+ и 4800+. Эти процессоры можно будет приобрести по цене от $500 до $1000 в зависимости от их производительности. То есть, свою линейку Athlon 64 X2 AMD ставит несколько выше обычных Athlon 64.
Однако прежде чем начинать судить о потребительских качествах новых CPU, давайте подробнее познакомимся с особенностями этих процессоров.

Архитектура Athlon 64 X2

Следует отметить, что реализация двухъядерности в процессорах AMD несколько отличается от реализации Intel. Хотя, как и Pentium D и Pentium Extreme Edition, Athlon 64 X2 по сути представляет собой два процессора Athlon 64, объединённых на одном кристалле, двухъядерный процессор от AMD предлагает несколько иной способ взаимодействия ядер между собой.
Дело в том, что подход Intel заключается в простом помещении на один кристалл двух ядер Prescott. При такой организации двухъядерности процессор не имеет никаких специальных механизмов для осуществления взаимодействия между ядрами. То есть, как и в обычных двухпроцессорных системах на базе Xeon, ядра в Smithfield общаются (например, для решения проблем с когерентностью кэшей) посредством системной шины. Соответственно, системная шина разделяется между ядрами процессора и при работе с памятью, что приводит к увеличению задержек при обращении к памяти обоих ядер одновременно.
Инженеры AMD предусмотрели возможность создания многоядерных процессоров ещё на этапе разработки архитектуры AMD64. Благодаря этому, в двухъядерных Athlon 64 X2 некоторые узкие места удалось обойти. Во-первых, дублированы в новых процессорах AMD далеко не все ресурсы. Хотя каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины Hyper-Transport на оба ядра общий. Взаимодействие каждого из ядер с разделяемыми ресурсами осуществляется посредством специального Crossbar-переключателя и очереди системных запросов (System Request Queue). На этом же уровне организовано и взаимодействие ядер между собой, благодаря чему вопросы когерентности кэшей решаются без дополнительной нагрузки на системную шину и шину памяти.


Таким образом, единственное узкое место, имеющееся в архитектуре Athlon 64 X2 – это пропускная способность подсистемы памяти 6.4 Гбайт в секунду, которая делится между процессорными ядрами. Впрочем, в будущем году AMD планирует перейти на использование более скоростных типов памяти, в частности двухканальной DDR2-667 SDRAM. Этот шаг должен положительно сказаться на увеличении производительности именно двухъядерных CPU.
Отсутствие поддержки современных типов памяти с высокой пропускной способностью новыми двухъядерными процессорами объясняется тем, что AMD в первую очередь стремилась сохранить совместимость Athlon 64 X2 с существующими платформами. В результате, эти процессоры могут использоваться в тех же самых материнских платах, что и обычные Athlon 64. Поэтому, Athlon 64 X2 имеют Socket 939 корпусировку, двухканальный контроллер памяти с поддержкой DDR400 SDRAM и работают с шиной HyperTransport с частотой до 1 ГГц. Благодаря этому единственное, что требуется для поддержки двухъядерных CPU от AMD современными Socket 939 материнскими платами, – это обновление BIOS. В этой связи отдельно следует отметить, что, к счастью, инженерам AMD удалось вписать в ранее установленные рамки и энергопотребление Athlon 64 X2.

Таким образом, в части совместимости с существующей инфраструктурой двухъядерные процессоры от AMD оказались лучше конкурирующих продуктов Intel. Smithfield совместим лишь с новыми чипсетами i955X и NVIDIA nFroce4 (Intel Edition), а также предъявляет повышенные требования к конвертеру питания материнской платы.
В основе процессоров Athlon 64 X2 использованы ядра с кодовыми именами Toledo и Manchester степпинга E, то есть по своему функционалу (за исключением возможности обработки двух вычислительных потоков одновременно) новые CPU подобны Athlon 64 на базе ядер San Diego и Venice. Так, Athlon 64 X2 поддерживают набор инструкций SSE3, а также имеют усовершенствованный контроллер памяти. Среди особенностей контроллера памяти Athlon 64 X2 следует упомянуть возможность использования разномастных модулей DIMM в различных каналах (вплоть до установки в оба канала памяти модулей разного объёма) и возможность работы с четырьмя двухсторонними модулями DIMM в режиме DDR400.
Процессоры Athlon 64 X2 (Toledo), содержащие два ядра с кэш-памятью второго уровня по 1 Мбайту на каждое ядро, состоят из примерно 233.2 млн. транзисторов и имеет площадь около 199 кв. мм. Таким образом, как того и следовало ожидать, кристалл и сложность двухъядерного процессора оказывается примерно вдвое больше кристалла соответствующего одноядерного CPU.

Линейка Athlon 64 X2

Линейка процессоров Athlon 64 X2 включает в себя четыре модели CPU c рейтингами 4800+, 4600+, 4400+ и 4200+. В их основе могут использоваться ядра с кодовыми именами Toledo и Manchester. Различия между ними заключаются в размере кэш-памяти второго уровня. Процессоры с кодовым именем Toledo, которые обладают рейтингами 4800+ и 4400+, имеют два L2 кэша (на каждое из ядер) объёмом 1 Мбайт. CPU же с кодовым именем Manchester располагают вдвое меньшим объёмом кэш-памяти: два раза по 512 Кбайт.
Частоты двухъядерных процессоров AMD достаточно высоки и равны 2.2 или 2.4 ГГц. То есть, тактовая частота старшей модели двухъядерного процессора AMD соответствует частоте старшего процессора в линейке Athlon 64. Это означает, что даже в приложениях, не поддерживающих многопоточность, Athlon 64 X2 сможет демонстрировать очень хороший уровень производительности.
Что же касается электрических и тепловых характеристик, то, несмотря на достаточно высокие частоты Athlon 64 X2, они мало отличаются от соответствующих характеристик одноядерных CPU. Максимальное тепловыделение новых процессоров с двумя ядрами составляет 110 Вт против 89 Вт у обычных Athlon 64, а ток питания возрос до 80А против 57.4А. Впрочем, если сравнивать электрические характеристики Athlon 64 X2 с спецификациями Athlon 64 FX-55, то рост максимального тепловыделения составит всего лишь 6Вт, а предельный ток и вовсе не изменится. Таким образом, можно говорить о том, что процессоры Athlon 64 X2 предъявляют к конвертеру питания материнских плат примерно такие же требования, как и Athlon 64 FX-55.

Целиком характеристики линейки процессоров Athlon 64 X2 выглядят следующим образом:


Следует отметить, что AMD позиционирует Athlon 64 X2 как совершенно независимую линейку, отвечающую своим целям. Процессоры этого семейства предназначаются той группе продвинутых пользователей, для которой важна возможность использования нескольких ресурсоёмких приложений одновременно, либо применяющих в повседневной работе приложения для создания цифрового контента, большинство из которых эффективно поддерживает многопоточность. То есть, Athlon 64 X2 представляется неким аналогом Athlon 64 FX, но не для игроков, а для энтузиастов, использующих PC для работы.


При этом выпуск Athlon 64 X2 не отменяет существование остальных линеек: Athlon 64 FX, Athlon 64 и Sempron. Все они продолжат мирно сосуществовать на рынке.
Но, отдельно следует отметить тот факт, что линейки Athlon 64 X2 и Athlon 64 имеют унифицированную систему рейтингов. Это значит, что процессоры Athlon 64 с рейтингами выше 4000+ на рынке не появятся. В то же время семейство одноядерных процессоров Athlon 64 FX будет продолжать развиваться, поскольку данные CPU востребованы геймерами.
Цены Athlon 64 X2 таковы, что, судя по ним, эту линейку можно считать дальнейшим развитием обычных Athlon 64. Фактически, так оно и есть. По мере того, как старшие модели Athlon 64 будут переходить в среднюю ценовую категорию, верхние модели в этой линейке будут заменяться на Athlon 64 X2.
Появление процессоров Athlon 64 X2 в продаже ожидается в июне. Рекомендованные AMD розничные цены выглядят следующим образом:

AMD Athlon 64 X2 4800+ - $1001;
AMD Athlon 64 X2 4600+ - $803;
AMD Athlon 64 X2 4400+ - $581;
AMD Athlon 64 X2 4200+ - $537.

Athlon 64 X2 4800+: первое знакомство

Нам удалось получить на тестирование образец процессора AMD Athlon 64 X2 4800+, являющегося старшей моделью в линейке двухъядерных CPU от AMD. Данный процессор по своему внешнему виду оказался очень похож на своих прародителей. Фактически, отличается он от обычных Athlon 64 FX и Athlon 64 для Socket 939 только лишь маркировкой.


Несмотря на то, что Athlon 64 X2 – это типичный Socket 939 процессор, который должен быть совместим с большинством материнских плат с 939-контактным процессорным гнездом, на данный момент его функционирование с многими платами затруднено в виду отсутствия необходимой поддержки со стороны BIOS. Единственной материнской платой, на которой данный CPU смог заработать в двухъядерном режиме в нашей лаборатории, оказалась ASUS A8N SLI Deluxe, для которой существует специальный технологический BIOS с поддержкой Athlon 64 X2. Впрочем, очевидно, что с появлением двухъядерных процессоров AMD в широкой продаже данный недостаток будет ликвидирован.
Следует отметить, что без необходимой поддержки со стороны BIOS, Athlon 64 X2 в любой материнской плате превосходно работает в одноядерном режиме. То есть, без обновлённой прошивки наш Athlon 64 X2 4800+ работал как Athlon 64 4000+.
Популярная утилита CPU-Z пока выдаёт о Athlon 64 X2 неполную информацию, хотя и распознаёт его:


Несмотря на то, что CPU-Z детектирует два ядра, вся отображаемая информация о кеш-памяти относится лишь к одному из ядер CPU.
Предваряя тесты производительности полученного процессора, в первую очередь мы решили исследовать его тепловые и электрические характеристики. Для начала мы сравнили температуру Athlon 64 X2 4800+ с температурой других Socket 939 процессоров. Для этих опытов мы применяли единый воздушный кулер AVC Z7U7414001; прогрев процессоров осуществлялся утилитой S&M 1.6.0, которая оказалась совместима с двухъядерным Athlon 64 X2.


В состоянии покоя температура Athlon 64 X2 оказывается несколько выше температуры процессоров Athlon 64 на ядре Venice. Однако, несмотря на наличие в нём двух ядер, этот CPU не горячее чем одноядерные процессоры, производимые по 130 нм технологическому процессу. Причём, такая же картина наблюдается и при максимальной нагрузке CPU работой. Температура Athlon 64 X2 при 100-процентной загрузке оказывается меньше температуры Athlon 64 и Athlon 64 FX, в которых используются 130 нм ядра. Таким образом, благодаря пониженному напряжению питания и использованию ядра ревизии E инженерам AMD действительно удалось добиться приемлемого тепловыделения своих двухъядерных процессоров.
Исследуя энергопотребление Athlon 64 X2, мы решили сравнить его не только с соответствующей характеристикой одноядерных Socket 939 CPU, но и с энергопотреблением старших процессоров Intel.


Как это ни покажется удивительным, но энергопотребление Athlon 64 X2 4800+ оказывается ниже энергопотребления Athlon 64 FX-55. Объясняется это тем, что в основе Athlon 64 FX-55 лежит старое 130 нм ядро, так что в этом нет ничего странного. Основной же вывод заключается в другом: те материнские платы, которые были совместимы с Athlon 64 FX-55, способны (с точки зрения мощности конвертера питания) поддерживать и новые двухъядерные процессоры AMD. То есть, AMD совершенно права, говоря о том, что вся необходимая для внедрения Athlon 64 X2 инфраструктура уже практически готова.

Естественно, мы не упустили и возможность проверки разгонного потенциала Athlon 64 X2 4800+. К сожалению, технологический BIOS для ASUS A8N-SLI Deluxe, поддерживающий Athlon 64 X2, не позволяет изменять ни напряжение на CPU, ни его множитель. Поэтому, эксперименты по оверклокингу выполнялись на штатном для процессора напряжении путём увеличения частоты тактового генератора.
В процессе экспериментов нам удалось увеличить частоту тактового генератора до 225 МГц, при этом процессор продолжал сохранять способность к стабильному функционированию. То есть, в результате разгона у нас получилось поднять частоту нового двухъядерного CPU от AMD до 2.7 ГГц.


Итак, при оверклокинге Athlon 64 X2 4800+ позволил увеличить свою частоту на 12.5%, что, как нам кажется, для двухъядерного CPU не так уж и плохо. По крайней мере, можно говорить о том, что частотный потенциал ядра Toledo близок к потенциалу других ядер ревизии E: San Diego, Venice и Palermo. Так что достигнутый при разгоне результат даёт нам надежду на появление ещё более скоростных процессоров в семействе Athlon 64 X2 до внедрения следующего технологического процесса.

Как мы тестировали

В рамках этого тестирования мы сравнили производительность двухъядерного процессора Athlon 64 X2 4800+ с быстродействием старших процессоров с одноядерной архитектурой. То есть, в соперниках у Athlon 64 X2 выступили Athlon 64, Athlon 64 FX, Pentium 4 и Pentium 4 Extreme Edition.
К сожалению, сегодня мы не можем представить сравнение нового двухъядерного процессора от AMD с конкурирующим решением от Intel, CPU с кодовым именем Smithfield. Однако в самое ближайшее время наши результаты тестов будут дополнены результатами Pentium D и Pentium Extreme Edition, так что следите за обновлениями.
Пока же в тестировании приняло участие несколько систем, состояли которые из перечисленного ниже набора комплектующих:

Процессоры:

AMD Athlon 64 X2 4800+ (Socket 939, 2.4 ГГц, 2 x 1024KB L2, ревизия ядра E6 - Toledo);
AMD Athlon 64 FX-55 (Socket 939, 2.6 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 4000+ (Socket 939, 2.4 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 3800+ (Socket 939, 2.4 ГГц, 512KB L2, ревизия ядра E3 - Venice);
Intel Pentium 4 Extreme Edition 3.73 ГГц (LGA775, 3.73 ГГц, 2MB L2);
Intel Pentium 4 660 (LGA775, 3.6 ГГц, 2MB L2);
Intel Pentium 4 570 (LGA775, 3.8 ГГц, 1MB L2);

Материнские платы:

ASUS A8N SLI Deluxe (Socket 939, NVIDIA nForce4 SLI);
NVIDIA C19 CRB Demo Board (LGA775, nForce4 SLI (Intel Edition)).

Память:

1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
1024MB DDR2-667 SDRAM (Corsair CM2X512A-5400UL, 2 x 512MB, 4-4-4-12).

Графическая карта: - PowerColor RADEON X800 XT (PCI-E x16).
Дисковая подсистема: - Maxtor MaXLine III 250GB (SATA150).
Операционная система: - Microsoft Windows XP SP2.

Производительность

Офисная работа

Для исследования производительности в офисных приложениях мы воспользовались тестами SYSmark 2004 и Business Winstone 2004.


Тест Business Winstone 2004 моделирует работу пользователя в распространённых приложениях: Microsoft Access 2002, Microsoft Excel 2002, Microsoft FrontPage 2002, Microsoft Outlook 2002, Microsoft PowerPoint 2002, Microsoft Project 2002, Microsoft Word 2002, Norton AntiVirus Professional Edition 2003 и WinZip 8.1. Полученный же результат достаточно закономерен: все эти приложения многопоточность не используют, а потому Athlon 64 X2 оказывается лишь чуть-чуть быстрее своего одноядерного аналога Athlon 64 4000+. Небольшое преимущество же объясняется скорее усовершенствованным контроллером памяти ядра Toledo, нежели наличием второго ядра.
Впрочем, в повседневной офисной работе частенько несколько приложений работает одновременно. Насколько эффективными в этом случае оказываются двухъядерные процессоры AMD, показано ниже.


В данном случае измеряется скорость работы в Microsoft Outlook и Internet Explorer, в то время как в фоновом режиме выполняется копирование файлов. Однако, как показывает приведённая диаграмма, копирование файлов – это не столь сложная задача и выигрыша двухъядерная архитектура тут не даёт.


Этот тест несколько сложнее. Здесь в фоновом режиме выполняется архивация файлов посредством Winzip, в то время как на переднем плане пользователь работает в Excel и Word. И в данном случае мы получаем вполне осязаемый дивиденд от двухъядерности. Athlon 64 X2 4800+, работающий на частоте 2.4 ГГц, обгоняет не только Athlon 64 4000+, но и одноядерный Athlon 64 FX-55 с частотой 2.6 ГГц.


По мере усложнения задач, работающих в фоновом режиме, прелести двухъядерной архитектуры начинают проявляться всё сильнее. В данном случае моделируется работа пользователя в приложениях Microsoft Excel, Microsoft Project, Microsoft Access, Microsoft PowerPoint, Microsoft FrontPage и WinZip, в то время как в фоновом режиме происходит антивирусная проверка. В данном тесте работающие приложения оказываются способными как следует загрузить оба ядра Athlon 64 X2, результат чего не заставляет себя ждать. Двухъядерный процессор поставленные задачи решает в полтора раза быстрее аналогичного одноядерного.


Здесь моделируется работа пользователя, получающего письмо в Outlook 2002, которое содержит набор документов в zip-архиве. Пока полученные файлы сканируются на вирусы при помощи VirusScan 7.0, пользователь просматривает e-mail и вносит пометки в календарь Outlook. Затем пользователь просматривает корпоративный веб-сайт и некоторые документы при помощи Internet Explorer 6.0.
Данная модель работы пользователя предусматривает использование многопоточности, поэтому Athlon 64 X2 4800+ демонстрирует более высокое быстродействие, нежели одноядерные процессоры от AMD и Intel. Заметим, что процессоры Pentium 4 с технологией «виртуальной» многопоточности Hyper-Threading не могут похвастать столь же высокой производительностью, как Athlon 64 X2, в котором находится два настоящих независимых процессорных ядра.


В данном бенчмарке гипотетический пользователь редактирует текст в Word 2002, а также использует Dragon NaturallySpeaking 6 для преобразования аудио-файла в текстовый документ. Готовый документ преобразуется в pdf-формат с использованием Acrobat 5.0.5. Затем, пользуясь сформированным документом, создается презентация в PowerPoint 2002. И в данном случае Athlon 64 X2 вновь оказывается на высоте.


Здесь модель работы такова: пользователь открывает базу данных в Access 2002 и выполняет ряд запросов. Документы архивируются с использованием WinZip 8.1. Результаты запросов экспортируются в Excel 2002, и на их основании строится диаграмма. Хотя в этом случае положительный эффект от двухъядерности также присутствует, процессоры семейства Pentium 4 справляются с такой работой несколько быстрее.
В целом, относительно оправданности использования двухъядерных процессоров в офисных приложениях можно сказать следующее. Сами по себе приложения такого типа редко оптимизированы для создания многопоточной нагрузки. Поэтому, получить выигрыш при работе в одном конкретном приложении на двухъядерном процессоре тяжело. Однако, если модель работы такова, что какие-то из ресурсоёмких задач выполняются в фоне, то процессоры с двумя ядрами могут дать весьма ощутимый прирост в быстродействии.

Создание цифрового контента

В этом разделе мы вновь воспользуемся комплексными тестами SYSmark 2004 и Multimedia Content Creation Winstone 2004.


Бенчмарк моделирует работу в следующих приложениях: Adobe Photoshop 7.0.1, Adobe Premiere 6.50, Macromedia Director MX 9.0, Macromedia Dreamweaver MX 6.1, Microsoft Windows Media Encoder 9 Version 9.00.00.2980, NewTek LightWave 3D 7.5b, Steinberg WaveLab 4.0f. Поскольку большинство приложений, предназначенных для создания и обработки цифрового контента, поддерживают многопоточность, совершенно неудивителен успех Athlon 64 X2 4800+ в данном тесте. Причём, заметим, что преимущество этого двухъядерного CPU проявляется даже тогда, когда параллельная работа в нескольких приложениях не используется.


Когда же несколько приложений работает одновременно, двухъядерные процессоры способны показать ещё более впечатляющие результаты. Например, в этом тесте в пакете 3ds max 5.1 рендерится в bmp файл изображение, и, в это же время, пользователь готовит web-страницы в Dreamweaver MX. Затем пользователь рендерит в векторном графическом формате 3D анимацию.


В этом случае моделируется работа в Premiere 6.5 пользователя, который создает видео-ролик из нескольких других роликов в raw-формате и отдельных звуковых треков. Ожидая окончания операции, пользователь готовит также изображение в Photoshop 7.01, модифицируя имеющуюся картинку и сохраняя ее на диске. После завершения создания видео-ролика, пользователь редактирует его и добавляет специальные эффекты в After Effects 5.5.
И снова мы видим гигантское преимущество двухъядерной архитектуры от AMD как над обычными Athlon 64 и Athlon 64 FX, так и над Pentium 4 с технологией «виртуальной» многоядерности Hyper-Threading.


А вот и ещё одно проявление триумфа двухъядерной архитектуры AMD. Его причины такие же, как и в предыдущем случае. Они кроются в использованной модели работы. Здесь гипотетический пользователь разархивирует контент веб-сайта из архива в zip-формате, одновременно используя Flash MX для открытия экспортированного 3D векторного графического ролика. Затем пользователь модифицирует его путем включения других картинок и оптимизирует для более быстрой анимации. Итоговый ролик со специальными эффектами сжимается с использованием Windows Media Encoder 9 для транслирования через Интернет. Затем создаваемый веб-сайт компонуется в Dreamweaver MX, а параллельно система сканируется на вирусы с использованием VirusScan 7.0.
Таким образом, необходимо признать, что для приложений, работающих с цифровым контентом, двухъядерная архитектура очень выгодна. Практически любые задачи такого типа умеют эффективно загружать оба ядра CPU одновременно, что приводит к сильному увеличению скорости работы системы.

PCMark04, 3DMark 2001 SE, 3DMark05

Отдельно мы решили посмотреть на скорость Athlon 64 X2 в популярных синтетических бенчмарках от FutureMark.






Как мы уже неоднократно отмечали ранее, тест PCMark04 оптимизирован для многопоточных систем. Именно поэтому процессоры Pentium 4 с технологией Hyper-Threading показывали в нём лучшие результаты, нежели CPU семейства Athlon 64. Однако, теперь ситуация сменилась. Два настоящих ядра в Athlon 64 X2 4800+ позволили этому процессору оказаться наверху диаграммы.






Графические тесты семейства 3DMark многопоточность не поддерживают ни в каком виде. Поэтому, результаты Athlon 64 X2 здесь мало отличаются от показателей обычных Athlon 64 с частотой 2.4 ГГц. Небольшое преимущество же над Athlon 64 4000+ объясняется наличием в ядре Toledo усовершенствованного контроллера памяти, а над Athlon 64 3800+ - большим объёмом кеш-памяти.
Впрочем, в составе 3DMark05 есть пара тестов, которые могут задействовать многопоточность. Это – тесты CPU. В этих бенчмарках на центральный процессор возлагается нагрузка по программной эмуляции вершинных шейдеров, а, кроме того, вторым потоком, выполняется обсчёт физики игровой среды.






Результаты вполне закономерны. Если приложение в состоянии задействовать два ядра, то двухъядерные процессоры работают намного быстрее одноядерных.

Игровые приложения















К сожалению, современные игровые приложения многопоточность не поддерживают. Несмотря на то, что технология «виртуальной» многоядерности Hyper-Threading появилась очень давно, разработчики игр не спешат делить вычисления, производимые игровым движком, на несколько потоков. И дело, скорее всего, не в том, что для игр это сделать тяжело. По всей видимости, рост вычислительных возможностей процессора для игр не так уж и важен, поскольку основная нагрузка в задачах этого типа ложится на видеокарту.
Впрочем, появление на рынке двухъядерных CPU даёт некоторую надежду на то, что производители игр станут сильнее нагружать центральный процессор расчётами. Результатом этого может явиться появление нового поколения игр с продвинутым искусственным интеллектом и реалистичной физикой.

Пока же в применении двухъядерных CPU в игровых системах никакого смысла нет. Поэтому, кстати, AMD не собирается прекращать развитие своей линейки процессоров ориентированной специально на геймеров, Athlon 64 FX. Эти процессоры характеризуются более высокими таковыми частотами и наличием единственного вычислительного ядра.

Сжатие информации


К сожалению, WinRAR не поддерживает многопоточность, поэтому результат Athlon 64 X2 4800+ практически не отличается от результата обычного Athlon 64 4000+.


Однако существуют архиваторы, которые могут эффективно задействовать двухъядерность. Например, 7zip. При тестировании в нём результаты Athlon 64 X2 4800+ вполне оправдывают стоимость этого процессора.

Кодирование аудио и видео


Популярный mp3 кодек Lame до недавнего времени многопоточность не поддерживал. Однако вновь появившаяся версия 3.97 alpha 2 этот недостаток исправила. В результате, процессоры Pentium 4 стали кодировать аудио быстрее, чем Athlon 64, а Athlon 64 X2 4800+, хотя и обгоняет своих одноядерных собратьев, всё же несколько отстаёт от старших моделей семейства Pentium 4 и Pentium 4 Extreme Edition.


Хотя кодек Mainconcept может задействовать два вычислительных ядра, скорость Athlon 64 X2 оказывается не на много выше быстродействия, демонстрируемого одноядерными собратьями. Причём, отчасти это преимущество объясняется не только двухъядерной архитектурой, но и поддержкой команд SSE3, а также усовершенствованным контроллером памяти. В результате, Pentium 4 с одним ядром в Mainconcept работают заметно быстрее, чем Athlon 64 X2 4800+.


При кодировании MPEG-4 популярным кодеком DiVX, картина складывается совершенно иная. Athlon 64 X2, благодаря наличию второго ядра, получает хорошую прибавку к скорости, которая позволяет ему обойти даже старшие модели Pentium 4.


Кодек XviD также поддерживает многопоточность, однако добавление второго ядра в этом случае даёт гораздо меньший прирост в скорости, чем в эпизоде с DiVX.


Очевидно, что из кодеков Windows Media Encoder оптимизирован для многоядерных архитектур лучше всего. Например, Athlon 64 X2 4800+ справляется с кодированием с использованием этого кодека в 1.7 раз быстрее, чем одноядерный Athlon 64 4000+, работающий на аналогичной тактовой частоте. В результате, говорить о каком бы то ни было соперничестве одноядерных и двухъядерных процессоров в WME просто бессмысленно.
Как и приложения для обработки цифрового контента, подавляющее большинство кодеков уже давно оптимизировано для Hyper-Threading. В результате, и двухъядерные процессоры, позволяющие выполнять два вычислительных потока одновременно, выполняют кодирование быстрее, чем одноядерные. То есть, использование систем с CPU с двумя ядрами для кодирования аудио и видео контента вполне оправдано.

Редактирование изображений и видео









Популярные продукты Adobe для обработки видео и редактирования изображений хорошо оптимизированы под многопроцессорные системы и Hyper-Threading. Поэтому, в Photoshop, After Effects и Premiere двухъядерный процессор от AMD демонстрирует чрезвычайно высокую производительность, значительно превышающую быстродействие не только Athlon 64 FX-55, но и более быстрых в задачах этого класса процессоров Pentium 4.

Распознавание текста


Достаточно популярная программа для оптического распознавания текстов ABBYY Finereader, хотя и имеет оптимизацию для процессоров с технологией Hyper-Threading, на Athlon 64 X2 работает только лишь одним потоком. Налицо ошибка программистов, которые детектируют возможность распараллеливания вычислений по наименованию процессора.
К сожалению, подобные примеры неправильного программирования встречаются и в наши дни. Будем надеяться, что на сегодня число приложений, подобных ABBYY Finereader, минимально, а в ближайшем будущем их количество сократится до нуля.

Математические вычисления






Как это не покажется странным, но популярные математические пакеты MATLAB и Mathematica в варианте для операционной системы Windows XP многопоточность не поддерживают. Поэтому, в этих задачах Athlon 64 X2 4800+ выступает примерно на одном уровне с Athlon 64 4000+, опережая его лишь за счёт лучше оптимизированного контроллера памяти.


Зато многие задачи математического моделирования позволяют организовать распараллеливание вычислений, которое даёт неплохой прирост производительности в случае использования двухъядерных CPU. Это и подтверждается тестом ScienceMark.

3D-рендеринг






Финальный рендеринг относится к задачам, которые могут легко и эффективно быть распараллелены. Поэтому, совершенно неудивительно, что применение при работе в 3ds max процессора Athlon 64 X2, оснащённого двумя вычислительными ядрами, позволяет получить очень неплохой прирост в быстродействии.






Аналогичная картина наблюдается и в Lightwave. Таким образом, использование двухъядерных процессоров при финальном рендеринге не менее выгодно, чем и в приложениях для обработки изображений и видео.

Общие впечатления

Перед тем, как сформулировать общие выводы по итогам нашего тестирования, пару слов следует сказать и о том, что осталось за кадром. А именно о комфорте использования систем, оснащённых двухъядерными процессорами. Дело в том, что в системе с одним одноядерным процессором, например, Athlon 64, в каждый момент времени может исполняться лишь один вычислительный поток. Это значит, что если в системе работает несколько приложений одновременно, то планировщик OC вынужден с большой частотой переключать процессорные ресурсы между задачами.

За счёт того, что современные процессоры очень быстры, переключение между задачами обычно остаётся незаметным на взгляд пользователя. Однако существуют и приложения, прервать которые для передачи процессорного времени другим задачам в очереди достаточно сложно. В этом случае операционная система начинает подтормаживать, что нередко вызывает раздражение у человека, сидящего за компьютером. Также, нередко можно наблюдать и ситуацию, когда приложение, забрав ресурсы процессора, «зависает», и такое приложение бывает очень тяжело снять с выполнения, поскольку оно не отдаёт процессорные ресурсы даже планировщику операционной системы.

Подобные проблемы возникают в системах, оснащённых двухъядерными процессорами, на порядок реже. Дело в том, процессоры с двумя ядрами способны выполнять одновременно два вычислительных потока, соответственно, для функционирования планировщика появляется в два раза больше свободных ресурсов, которые можно разделять между работающими приложениями. Фактически, для того, чтобы работа в системе с двухъядерным процессором стала некомфортной, необходимо одновременное пересечение двух процессов, пытающихся захватить в безраздельное пользование все ресурсы CPU.

В заключение мы решили провести небольшой эксперимент, показывающий, как влияет на производительность системы с одноядерным и двухъядерным процессором параллельное исполнение большого количества ресурсоёмких приложений. Для этого мы измеряли число fps в Half-Life 2, запуская в фоне несколько копий архиватора WinRAR.


Как видим, при использовании в системе процессора Athlon 64 X2 4800+, производительность в Half-Life 2 остаётся на приемлемом уровне гораздо дольше, нежели в системе с одноядерным, но более высокочастотным процессором Athlon 64 FX-55. Фактически, в системе с одноядерным процессором запуск одного фонового приложения уже приводит к двукратному падению скорости. При дальнейшем увеличении числа задач, работающих в фоне, производительность падает до неприличного уровня.
В системе же с двухъядерным процессором сохранять высокую производительность приложения, работающего на переднем плане, удаётся гораздо дольше. Запуск одной копии WinRAR проходит практически незамеченным, добавление большего числа фоновых приложений, хотя и оказывает влияние на задачу переднего плана, приводит к гораздо меньшему снижению производительности. Следует заметить, что падение скорости в данном случае вызвано не столько нехваткой процессорных ресурсов, сколько разделением ограниченной по пропускной способности шины памяти между работающими приложениями. То есть, если фоновые задачи не будут активно работать с памятью, приложение переднего плана вряд ли сильно будет реагировать на увеличение фоновой нагрузки.

Выводы

Сегодня состоялось наше первое знакомство с двухъядерными процессорами от AMD. Как показали проведённые испытания, идея объединения двух ядер в одном процессоре продемонстрировала свою состоятельность на практике.
Использование двухъядерных процессоров в настольных системах, способно значительно увеличить скорость работы целого ряда приложений, эффективно использующих многопоточность. Ввиду того, что технология виртуальной многопоточности, Hyper-Threading присутствует в процессорах семейства Pentium 4 уже очень продолжительно время, разработчики программного обеспечения к настоящему времени предлагают достаточно большое число программ, способных получить выигрыш от двухъядерной архитектуры CPU. Так, среди приложений, скорость работы которых на двухъядерных процессорах будет увеличена, следует отметить утилиты для кодирования видео и аудио, системы 3D моделирования и рендеринга, программы для редактирования фото и видео, а также профессиональные графические приложения класса САПР.
При этом существует и большое количество программного обеспечения, которое многопоточность не использует или использует её крайне ограниченно. Среди ярких представителей таких программ – офисные приложения, веб-браузеры, почтовые клиенты, медиа-проигрыватели, а также игры. Однако даже при работе в таких приложениях двухъядерная архитектура CPU способна оказать положительное влияние. Например, в тех случаях, когда несколько приложений выполняется одновременно.
Резюмируя вышесказанное, на графике ниже мы просто приводим численное выражение преимущества двухъядерного процессора Athlon 64 X2 4800+ над одноядерным Athlon 64 4000+, работающим на той же частоте 2.4 ГГц.


Как видно по графику, Athlon 64 X2 4800+ оказывается во многих приложениях значительно быстрее старшего CPU в семействе Athlon 64. И, если бы не баснословно высокая стоимость Athlon 64 X2 4800+, превышающая $1000, то этот CPU смело можно было бы назвать весьма выгодным приобретением. Тем более что ни в одном приложении он не отстаёт от своих одноядерных собратьев.
Учитывая же цену Athlon 64 X2, следует признать, что на сегодня эти процессоры наравне с Athlon 64 FX могут являться разве только ещё одним предложением для обеспеченных энтузиастов. Те из них, для кого в первую очередь важна не игровая производительность, а скорость работы в других приложениях, обратят внимание на линейку Athlon 64 X2. Экстремальные же геймеры, очевидно, останутся приверженцами Athlon 64 FX.

Рассмотрение двухъядерных процессоров на нашем сайте на этом не заканчивается. В ближайшие дни ждите второй части эпопеи, в которой речь пойдёт о двухъядерных CPU от Intel.

Первые двухъядерные процессоры Intel были основаны на ядре Smithfield, которое является ничем иным, как двумя ядрами Prescott степпинга E0 объединенными на одном кристалле. Между собой ядра взаимодействуют через системную шину при помощи специального арбитра. Соответственно размер кристалла достиг 206 кв. мм., а количество транзисторов увеличилось до 230 миллионов.

Интересное рассмотреть как реализована технология HyperThreading в двухъядерных процессоров на ядре Smithfield. Так у процессоров Pentium D поддержка этой технологии полностью отсутствует. Маркетологи Intel посчитали, что два "реальных" ядра вполне достаточно для большинства пользователей. А вот в процессоре Pentium Extreme Edition 840 она включена, и благодаря этому процессор может исполнять 4 потока команд одновременно. Кстати, именно поддержка HyperThreading является единственным отличием процессора Pentium Extreme Edition от Pentium D. Все остальные функции и технологии полностью одинаковы. Среди них можно выделить поддержку набора команд EM64T, технологии энергосбережения EIST, C1E и TM2, а также функцию защиты информации NX-bit. В результате разница между процессорами Pentium D и Pentium EE является полностью искусственной.

Перечислим модели процессоров на ядре Smithfield. Это Pentium D с индексами 820, 830 и 840 а также Pentium Extreme Edition 840. Все они работают на частоте системной шины 200 МГц (800QPB), выпущены по 90нм техпроцессу, имеют штатное напряжение питания (Vcore) 1,25-1,388 В, максимальное тепловыделение ~130 Вт (хотя по некоторым оценкам тепловыделение EE 840 находится на уровне 180 Вт).

Честно говоря, каких-либо положительных сторон у процессоров на ядре Smithfield я не обнаружил. Основная претензия заключается в уровне производительности, когда во многих приложениях (которые не оптимизированы под многопоточность) двухъядерные процессоры Smithfield проигрывают одноядерным Prescott, работающих на той же тактовой частоте. При этом у процессоров AMD такой ситуации нет. Очевидно проблема кроется во взаимодействии ядер через процессорную шину (при разработке ядра Prescott не было предусмотрено масштабирование производительности путем увеличения количества ядер). Возможно именно по этой причине, компания Intel решила скомпенсировать недостатки более низкой ценой. В частности ценник на младшую модель Pentium D 820 был установлен на уровне ~260$ (самый дешевый Athlon X2 стоит 340 $).

Кстати, модель Pentium D 820 несовместима со всеми материнскими платами на чипсете nForce4 SLI Intel Edition (операционная система не видит второе ядро). Проблема кроется в самом чипсете и nVidia официально признала данный факт. Кроме того, в интернете встречались сообщения о несовместимости более старших моделей (но это были единичные случае с отдельными конфигурациями). Тут же отметим, что новый чипсет nForce4 SLI Х16 Intel Edition избавлен от этой проблемы.

Потенциал разгона у процессора на ядре Smithfield оказался не очень высоким. Стабильная работа системы сохранялась только при тактовой частоте не превышающей 3,25 ГГц.

Справедливости ради отметим, что данный процессор запускался на частоте 3,8 Ггц, и при использовании более эффективной системы охлаждения можно было бы достичь стабильной работы.

Забегая вперед отметим, что это все "цветочки" по сравнению с разгонным потенциалом 65нм процессоров.

Что касается совместимости, то процессоры на ядре Smithfield потенциально могут быть установлены в любую LGA775 материнскую плату. Однако эти процессоры имеют повышенные требования к модулю питания платы. Подводя итоги, можно сказать что процессоры на ядре Smithfield являются неудачным продуктом. Однако, разговор о двухъядерных процессорах Intel мы не заканчиваем, ибо под конец 2005 года компания успешно перешла на новейший 65нм техпроцесс, а в начале 2006 года на прилавках магазинов (по традиции впервые это случилось в Японии) появились первые процессоры на ядре Presler и Cedar Mill.

Что же дает новый, более "тонкий" техпроцесс? Если кардинально не менять архитектуру ядра, но новый техпроцесс позволяет уменьшить площадь ядра (т.е. увеличить количество процессоров на одной пластине, и тем самым снизить себестоимость), уменьшить энергопотребление (соответственно - тепловыделение) и повысить тактовые частоты. Впрочем, два последних параметра взаимосвязаны: если мы не увеличиваем частоту, то получаем процессор с меньшим тепловыделением. Если же не изменяем энергопотребление, то получаем процессоры с более высокими частотами.

Инженеры компании Intel выбрали именно второй путь - официальное тепловыделение осталось на уровне 130 Вт, что позволило увеличить тактовые частоты до значения 3,4 ГГц и 3,46 ГГц. Причем как показали наши опыты с разгоном, потенциал 65 нм техпроцессора очень велик, и по мере усовершенствования и оптимизации техпроцесса рост тактовых частот будет продолжен (вплоть до перехода на совершенно новую процессорную архитектуру).

Что касается процессорного ядра Presler, то подчеркнем те технические моменты, которые отличают их от ядра Smithfield. Самый главный факт - на одном ядре Presler размещены два ядра Cedar Mill, которое является ничем иным как ядром Prescott 2M выпущенным по 65нм техпроцессу (у ядра Smithfield два "обычных" ядра Prescott). Тем самым инженеры Intel воспользовались преимуществом 65 нм техпроцесса, который позволяет либо уменьшить площадь кристалла либо увеличить кол-во транзисторов.

Впрочем такое описание ядра Presler не совсем корректно. Дело в том, что под крышкой теплораспределителя можно обнаружить два отдельных процессорных ядра, тогда как Smithfield представлял собой единое ядро (хотя внутри существовало разделение между ядрами). Таким образом значительно улучшается эффективность производства: появляется возможность для производства одного 2х-ядерного процессора использовать ядра с разных участков пластины (или даже с разных пластин). Кроме того, из-за модульной архитектуры повышается уровень выхода годных кристаллов (причем условно "негодные" можно отмаркировать как процессоры Pentium D:).

Утилита CPU-Z предоставляет нам следующую информацию о процессоре:

Внешний вид процессора с лицевой стороны ничем не отличается от других LGA775 процессоров. А с обратной стороны есть различия в расположении элементов:



Слева-направо: Prescott 2M, Smithfield, Presler

Presler крупным планом:


Итак, новые двухъядерные процессоры на ядре Presler получили наименование Pentium D с индексами 920 - 950. Кроме того, был выпущен процессор Pentium Extreme Edition 955 с включенной технологией HyperThreading и работающий на частоте системной шины = 266 МГц (1066QPB). Для того, что бы читатель не запутался во всех представленных процессорах, мы сведем их характеристики в единую таблицу:

Наименование Степпинг ядра Тактовая частота Частота шины (FSB) Объем кеш-памяти L2 HyperThreading Поддержка виртуализации
Pentium D 820 Smithfield 2800Мгц 800Мгц 2 x 1Мб Нет Нет
Pentium D 830 Smithfield 3000Мгц 800Мгц 2 x 1Мб Нет Нет
Pentium D 840 Smithfield 3200Мгц 800Мгц 2 x 1Мб Нет Нет
Pentium Extreme Edition 840 Smithfield 3200Мгц 800Мгц 2 x 1Мб Да Нет
Pentium D 920 Presler 2800Мгц 800Мгц 2 x 2Мб Нет Да
Pentium D 930 Presler 3000Мгц 800Мгц 2 x 2Мб Нет Да
Pentium D 940 Presler 3200Мгц 800Мгц 2 x 2Мб Нет Да
Pentium D 950 Presler 3400Мгц 800Мгц 2 x 2Мб Нет Да
Pentium Extreme Edition 955 Presler 3466Мгц 1066Мгц 2 x 2Мб Да Да

Несколько слов про совместимость новых процессоров с материнскими платами. Официально новые процессоры на ядре Presler с частотой шины 1066 МГц совместимы только с материнскими платами на новейшем чипсете i975X. Однако каких-либо принципиальных ограничений на работу с платами на других чипсетах с поддержкой такой шины (i945P, i955X и nForce4 SLI (x16) Intel Edition) нет. Главное, что бы модуль питания платы был рассчитан на соответствующие нагрузки, а версия биоса корректно распознавала новый процессор. В частности, мы без проблем запустили процессор Pentium Extreme Edition 955 на материнской платы Asus P5WD2 Premium, которая основана на чипсете i955X.

Что касается процессоров с частотой шины 800Мгц (ядра Presler и CedarMill) то в большинстве случаев они заработают на всех материнских платах поддерживающих эту шину.

Теперь поговорим о разгоне. Также как и у процессоров AMD, у процессоров производства Intel множитель заблокирован в сторону увеличения. Но на тестовом процессоре Pentium Extreme Edition 955 он оказался полностью разблокирован (от 12 до 60) что дало нам возможность оценить потенциал 65нм ядра без влияния остальных компонентов системы (прежде всего чипсета и памяти, которые работали в штатных режимах). Итак, без повышения напряжения ядра процессор с легкостью взял частоту 4,0 ГГц, а с незначительным увеличением Vcore процессор работал совершенно стабильно на частоте 4,26 ГГц.

А при увеличении напряжения до 1.4125В, процессору покорилась частота 4.55Ггц.

Но в этом случае нельзя было говорить о полной стабильности: некоторые тесты проходили отлично (их результаты приведены на сл. странице), а другие выдавали совершенно неправильные результаты (из-за сбоя системного таймера). При этом повышать напряжение на процессоре мы уже не могли (использовался воздушный кулер Gigabyte G-power), поскольку это приводило к троттлингу. Так что, потенциал в области разгона мы оцениваем на отлично, и владельцы систем водяного охлаждения смогут достичь 4,5Ггц (по сообщениям в интернете, владельцы криогенных систем достигли уже 5.5Ггц!).

Итак, предварительный вывод по процессорам на ядре Presler. Благодаря новому 65 нм техпроцессу, Intel смогла выпустить новое поколение двухъядерных процессоров, которые по всем техническим характеристиками (функциональность, скорость работы, тепловыделение) лучше процессоров на ядре Smithfield. И именно процессоры на ядре Presler смогут дать достойный отпор конкурентам в лице линейки Athlon X2. Но насколько изменилось соотношение сил, мы увидим на следующей странице, которая посвящена производительности.

Процессор - это основной компонент компьютера, без него ничего работать не будет. С момента выпуска первого процессора эта технология развивается семимильными темпами. Менялись архитектуры и поколения процессоров AMD и Intel.

В одной из предыдущих статей мы рассматривали , в это статье мы рассмотрим поколения процессоров AMD, рассмотрим из чего все начиналось, и как совершенствовалось пока процессоры не стали такими, как они есть сейчас. Иногда очень интересно понять как развивалась технология.

Как вы уже знаете, изначально, компанией, которая выпускала процессоры для компьютера была Intel. Но правительству США не нравилось, что такая важная для оборонной промышленности и экономики страны деталь выпускается только одной компанией. С другой стороны, были и другие желающие выпускать процессоры.

Была основана компания AMD, Intel поделилась с ними всеми своими наработками и разрешила AMD использовать свою архитектуру для выпуска процессоров. Но продлилось это недолго, спустя несколько лет Intel перестала делиться новыми наработками и AMD пришлось улучшать свои процессоры самим. Под понятием архитектура мы будем подразумевать микроархитектуру, расположение транзисторов на печатной плате.

Первые архитектуры процессоров

Сначала кратко рассмотрим первые процессоры, выпускаемые компанией. Самым первым был AM980, он был полным восьмиразрядного процессора Intel 8080.

Следующим процессором был AMD 8086, клон Intel 8086, который выпускался по контракту с IBM, из-за которого Intel была вынуждена лицензировать эту архитектуру конкуренту. Процессор был 16-ти разрядным, имел частоту 10 МГц, а для его изготовления использовался техпроцесс 3000 нм.

Следующим процессором был клон Intel 80286- AMD AM286, по сравнению с устройством от Intel, он имел большую тактовую частоту, до 20 МГц. Техпроцесс уменьшился до 1500 нм.

Дальше был процессор AMD 80386, клон Intel 80386, Intel была против выпуска этой модели, но компании удалось выиграть иск в суде. Здесь тоже была поднята частота до 40 МГц, тогда как у Intel она была только 32 МГц. Техпроцесс - 1000 нм.

AM486 - последний процессор, выпущенный на основе наработок Intel. Частота процессора была поднята до 120 МГц. Дальше, из-за судебных разбирательств AMD больше не смогла использовать технологии Intel и им пришлось разрабатывать свои процессоры.

Пятое поколение - K5

AMD выпустила свой первый процессор в 1995 году. Он имел новую архитектуру, которая основывалась на ранее разработанной архитектуре RISC. Обычные инструкции перекодировались в микроинструкции, что помогло очень сильно поднять производительность. Но тут AMD не смогла обойти Intel. Процессор имел тактовую частоту 100 МГц, тогда как Intel Pentium уже работал на частоте 133 МГц. Для изготовления процессора использовался техпроцесс 350 нм.

Шестое поколение - K6

AMD не стала разрабатывать новую архитектуру, а решила приобрести компанию NextGen и использовать ее наработки Nx686. Хотя эта архитектура очень отличалась, здесь тоже использовалось преобразование инструкций в RISC, и она тоже не обошла Pentium II. Частота процессора была 350 МГц, потребляемая мощность - 28 Ватт, а техпроцесс 250 нм.

Архитектура K6 имела несколько улучшений в будущем, в K6 II было добавлено несколько наборов дополнительных инструкций, улучшивших производительность, а в K6 III добавлен кєш L2.

Седьмое поколение - K7

В 1999 году появилась новая микроархитектура процессоров AMD Athlon. Здесь была значительно увеличена тактовая частота, до 1 ГГц. Кэш второго уровня был вынесен на отдельный чип и имел размер 512 кб, кэш первого уровня - 64 Кб. Для изготовления использовался техпроцесс 250 нм.

Было выпущено еще несколько процессоров на архитектуре Athlon, в Thunderbird кэш второго уровня вернулся на основную интегральную схему, что позволило увеличить производительность, а техпроцесс был уменьшен до 150 нм.

В 2001 году были выпущены процессоры на основе архитектуры процессоров AMD Athlon Palomino c тактовой частотой 1733 МГц, кэшем L2 256 Мб и техпроцессом 180 нм. Потребляемая мощность достигала 72 Ватт.

Улучшение архитектуры продолжалось и в 2002 году компания выпустила на рынок процессоры Athlon Thoroughbred, которые использовали техпроцесс 130 нм и работали на тактовой частоте 2 ГГц. В следующем улучшении Barton была увеличена тактовая частота до 2,33 ГГц и увеличен в два раза размер кэша L2.

В 2003 году AMD выпустила архитектуру K7 Sempron, которая имела тактовую частоту 2 ГГц тоже с техпроцессом 130 нм, но уже дешевле.

Восьмое поколение - K8

Все предыдущие поколения процессоров были 32 битной разрядности и только архитектура K8 начала поддерживать технологию 64 бит. Архитектура притерпела много изменений, теперь процессоры теоретически могли работать с 1 Тб оперативной памяти, контроллер памяти переместили в процессор, что улучшило производительность по сравнению с K7. Также здесь была добавлена новая технология обмена данными HyperTransport.

Первые процессоры на архитектуре K8 были Sledgehammer и Clawhammer, они имели частоту 2,4-2,6 ГГц и тот же техпроцесс 130 нм. Потребляемая мощность - 89 Вт. Дальше, как и с архитектурой K7 компания выполняла медленное улучшение. В 2006 году были выпущены процессоры Winchester, Venice, San Diego, которые имели тактовую частоту до 2,6 ГГц и техпроцесс 90 нм.

В 2006 году вышли процессоры Orleans и Lima, которые имели тактовую частоту 2,8 ГГц, Последний уже имел два ядра и поддерживал память DDR2.

Наряду с линейкой Athlon, AMD выпустила линейку Semron в 2004 году. Эти процессоры имели меньшую частоту и размер кэша, но были дешевле. Поддерживалась частота до 2,3 ГГц и кэш второго уровня до 512 Кб.

В 2006 году продолжилось развитие линейки Athlon. Были выпущены первые двухъядерные процессоры Athlon X2: Manchester и Brisbane. Они имели тактовую частоту до 3,2 ГГц, техпроцесс 65 нм и потребляемую мощность 125 Вт. В том же году была представлена бюджетная линейка Turion, с тактовой частотой 2,4 ГГц.

Десятое поколение - K10

Следующей архитектурой от AMD была K10, она похожа на K8, но получила много усовершенствований, среди которых увеличение кэша, улучшение контроллера памяти, механизма IPC, а самое главное - это четырехъядерная архитектура.

Первой была линейка Phenom, эти процессоры использовались в качестве серверных, но они имели серьезную проблему, которая приводила к зависанию процессора. Позже AMD исправили ее программно, но это снизило производительность. Также были выпущены процессоры в линейках Athlon и Operon. Процессоры работали на частоте 2,6 ГГц, имели 512 кб кэша второго уровня, 2 Мб кэша третьего уровня и были изготовлены по техпроцессу 65 нм.

Следующим улучшением архитектуры была линейка Phenom II, в которой AMD выполнила переход техпроцесс на 45 нм, чем значительно снизила потребляемую мощность и расход тепла. Четырехъядерные процессоры Phenom II имели частоту до 3,7 ГГц, кэш третьего уровня до 6 Мб. Процессор Deneb уже поддерживал память DDR3. Затем были выпущены двухъядерные и трех ядерные процессоры Phenom II X2 и X3, которые не набрали большой популярности и работали на более низких частотах.

В 2009 году были выпущены бюджетные процессоры AMD Athlon II. Они имели тактовую частоту до 3.0 ГГц, но для уменьшения цены был вырезан кэш третьего уровня. В линейке был четырехъядерный процессор Propus и двухъядерный Regor. В том же году была обновлена линейка продуктов Semton. Они тоже не имели кэша L3 и работали на тактовой частоте 2,9 ГГц.

В 2010 были выпущены шести ядерный Thuban и четырехъядерный Zosma, которые могли работать с тактовой частотой 3,7 ГГц. Частота процессора могла меняться в зависимости от нагрузки.

Пятнадцатое поколение - AMD Bulldozer

В октябре 2011 года на замену K10 пришла новая архитектура - Bulldozer. Здесь компания пыталась использовать большое количество ядер и высокую тактовую частоту чтобы опередить Sandy Bridge от Intel. Первый чип Zambezi не смог даже превзойти Phenom II, уже не говоря про Intel.

Через год после выпуска Bulldozer, AMD выпустила улучшенную архитектуру, под кодовым именем Piledriver. Здесь была увеличена тактовая частота и производительность примерно на 15% без увеличения потребляемой мощности. Процессоры имели тактовую частоту до 4,1 ГГц, потребляли до 100 Вт и для их изготовления использовался техпроцесс 32 нм.

Затем была выпущена линейка процессоров FX на этой же архитектуре. Они имели тактовую частоту до 4,7 ГГц (5 ГГц при разгоне), были версии на четыре, шесть и восемь ядер, и потребляли до 125 Вт.

Следующее улучшение Bulldozer - Excavator, вышло в 2015 году. Здесь техпроцесс был уменьшен до 28 нм. Тактовая частота процессора составляет 3,5 ГГц, количество ядер - 4, а потребление энергии - 65 Вт.

Шестнадцатое поколение - Zen

Это новое поколение процессоров AMD. Архитектура Zen была разработана компанией с нуля. Процессоры выйдут в этом году, ожидается что весной. Для их изготовления будет использоваться техпроцесс 14 нм.

Процессоры будут поддерживать память DDR4 и выделять тепла 95 Ватт энергии. Процессоры будут иметь до 8 ядер, 16 потоков, работать с тактовой частотой 3,4 ГГц. Также была улучшена эффективность потребления энергии и была заявлена возможность автоматического разгона, когда процессор подстраивается в под возможности вашего охлаждения.

Выводы

В этой статье мы рассмотрели архитектуры процессоров AMD. Теперь вы знаете как они развивались процессоры от AMD и как обстоят дела на данный момент сейчас. Вы можете видеть что, некоторые поколения процессоров AMD пропущены, это мобильные процессоры, и мы их намерено исключили. Надеюсь, эта информация была полезной для вас.

Двухъядерные процессоры - микропроцессоры, на кристалле которых (площадью около 200 мм 2) размещено два независимых процессора, работающих одновременно (параллельно). Это ведет к увеличению производительности персонального компьютера на 80-100%. Двухъядерные процессоры компании AMD построены на основе ядер Opteron (в версиях с тактовой частотой 1, 8-2, 2 ГГц) и Athlon. Первым присвоена дополнительная маркировка - 2xx и 1xx, вторым - X2 (например - Athlon 64 X2 4200). В начале 2006 AMD объявила о выпуске новых высокопроизводительных модификаций серверных двухъядерных процессоров Opteron: Model 885 - для серверов уровня предприятия, имеющих до 8 процессоров; Model 285 - для высокопроизводительных двухпроцессорных серверов и рабочих станций; Model 185 - для однопроцессорных серверов и рабочих станций. В середине 2006 фирма AMD выпустила на рынок двухъядерные процессоры Athlon 64X2 4000+, 4400, 4600 и 4800+ с пониженным уровнем потребляемой энергии - 65 Вт.

В основе конструкции первых наиболее производительных двухъядерных процессоров компании Intel (например Intel Pentium Extreme Edition 840) лежало использование двух процессоров Prescott, снабженных согласующей их работу логикой. Все двухъядерные Pentium 4 получили наименование Pentium D и номера восьмисотой, а также девятисотой серий (Pentium D 8xx и 9xx). В ноябре 2005 компания Intel анонсировала четыре модели процессора 7000 серии на базе двухъядерных Xeon`ов, различающихся тактовой частотой, объемом кэш-памяти второго уровня для каждого процессорного ядра и частотой поддерживаемых системных шин. В марте 2006 компания Intel продемонстрировала на форуме IDF разработку новой микроархитектуры высокопроизводительных двухъядерных процессоров - Intel Core. В последней реализованы 5 ключевых инноваций, названных Wide Dynamic Execution. В частности одним ядром обеспечивается выполнение 4-х инструкций за такт (на одну больше, чем в Pentium M и процессорах построенных на основе архитектуры NetBurst); использовано лучшее «наследство» Pentium M (например, в части технологии управления питанием, объединения групп операций перед их выполнением и др.); в каждом ядре имеет место одно устройство предварительной выборки инструкций и четыре - предварительной выборки данных (по 2 в кэш-памяти первого и второго уровня); одна из инноваций (Advanced Digital Media Boost) обеспечивает поддержку выполнения за один такт всех 128-разрядных инструкций Streaming SIMD Extencions и др. Летом 2006 Intel начала выпуск на основе этой архитектуры процессоров Intel Core 2 Duo и Intel Core 2 Extreme.

Активно ведутся работы по увеличению количества ядер на одном кристалле. По отношению к таким многопроцессорным системам и технологии их производства используются термины: многоядерные процессоры и многоядерные технологии. Первым примером реализации одного из вариантов таких технологий может служить разработка компании SUN Microsystems - 8-ядерный многопотоковый (обрабатывающий 4 потока каждым ядром) микропроцессор UltraSPARC T1 (кодовое название - Niagara). Данный микропроцессор обеспечивает значительное увеличение производительности серверов при весьма низком энергопотреблении (менее 70 Вт). В свою очередь Intel планирует в 2007 г. выпустить на основе архитектуры Intel Core 4-ядерных процессоров под кодовым названием Kentsfield (для настольных систем, рабочих станций и однопроцессорных серверов; предполагается, что процессоры получат коммерческое название Intel Core 2 Quad), Clovertown (для двухпроцессорных серверов) и Tigerton (для многопроцессорных систем). Корпорация Intel планирует, что к концу 2007 г. доля выпускаемых ею многоядерных процессоров для настольных и мобильных систем составит 90%, а для серверов - почти 100%.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!