Настройка оборудования и программного обеспечения

Как выбрать игровую мышь? Дешевая игровая мышь. Как «видят» компьютерные мыши

Является не самой важной составляющей всего компьютера в целом, но нет, без неё работа за ПК превращается в очень трудное, не приносящее удовольствие занятие. Мировые бренды A4Tech, Logitech, Defender ведут постоянную борьбу друг с другом за создание самой в мире. Вот почему на сегодняшний момент различные виды компьютерных мышей постоянно претерпевают изменения в лучшую сторону. Если постоянно следить за всеми новинками на рынке компьютерных мышей, и при этом покупать, хотя бы одну из последних моделей, можно попросту остаться без денег.

Наверняка многие из вас помнят первые мыши, которые распознавали движения и координаты благодаря резиновому шарику внутри. Все старое всегда заменяется новым, вот почему на сегодняшний день о механических манипуляторах вспоминают все реже. пришла на замену механической, вобрав в себя все её лучшие качества. Впрочем, не прошло и нескольких лет, а в двери уже постучалась лазерная мышь, последняя разработка различных компаний, производящих устройства ввода.

Главный выбор: лазерная мышь или оптическая?

Пока ребята из A4Tech еще не придумали новый лучший принцип распознавания координат мышью, перед каждым пользователем компьютера, ноутбука или нетбука стоит выбор: лазерная мышь или оптическая. Вот почему необходимо разобраться с преимуществами и недостатками лазерной и оптической мыши, для того, чтобы в дальнейшем не испытывать никаких затруднений при использовании одного из представленных вариантов.

Несомненно, компьютерная мышь, помимо того что водит курсором по экрану, обладает двумя важными особенностями - точностью и скоростью. Эти слова подтвердит любой профессиональный геймер. В гонке за точностью у механического манипулятора нет никаких шансов в борьбе с новыми устройствами ввода. Поэтому будь то или оптическая, они далеко ушли в гонке за точностью от механической мыши.

Сам по себе принцип работы обоих видов мышей одинаков: сенсор снимает фото поверхности, а чип внутри мыши анализирует это фото и определяет координаты. При работе оптической, как впрочем, и лазерной мыши, поверхность снизу манипуляторав подсвечивается. Это делается для более качественного и точного снимка, который сделает специальный считывающий элемент, вот только в оптической мыши работают светодиоды, в то время как в лазерной непосредственно лазер. Кстати лазер лучше подсвечивает считываемую поверхность, вследствие чего качество изображения снимка лазером намного четче, чем у светодиода.Получается, что лазерная мышь точнее оптической, потому что лазер в несколько раз точнее светодиода и не искажает считываемую картинку. Это так называемое небольшое отличие лазерной мыши от оптической.

Тем не менее, кроме точности в хорошем манипуляторе очень важны разрешение и скорость работы. Разрешение измеряется в единицах, которые называют dpi (по-русски - в точках на дюйм). Опять же, лазерная мышь обладает разрешением до двух тысяч, в то время как оптическая может похвастаться только тысячей двумястами точек на дюйм. По правде говоря, наиболее подходящим и удобным расширением для приятной работы с мышью считается восемьсот точек на дюйм, но компании-производители компьютерных манипуляторов просто используют эти показатели, как небольшой маркетинговый ход. При наличии желания, разрешение работы мыши можно отрегулировать в панели управления, и тогда вы собственноручно ощутите на себе все плюсы и минусы высокого разрешения манипулятора.

Оптические мыши выпускаются в двух интерфейсах PS/2 и то время как лазерные только с интерфейсом USB. Технология USB является более узкопрофильной, и может быть меньше, чем у PS/2. Поэтому курсор будет передвигаться по экрану не так плавно.

Теперь, когда вы более подробно ознакомились с устройствами ввода, попытайтесь определиться, лазерная мышь или оптическая подходит вам лучше, и обязательно при покупке попробуйте в использовании оба варианта.

Компьютерная мышь – удобный и самый распространённый манипулятор. Она значительно упрощает работу с электронными документами и мультимедиа, а некоторые игры предназначены исключительно для управления мышью. Стеллажи компьютерных магазинов заполнены сотнями их модификаций, отличающихся размером, количеством кнопок и ценой. Но главное отличие скрывается под корпусом. Это тип источника излучения, который может быть представлен светодиодом или лазером. Что же лучше: оптическая светодиодная или лазерная мышь? Полный ответ на этот вопрос даст их подробное сравнение.

Устройство, принцип работы и основные отличия

Несколько последних лет на рынке главенствует второе поколение оптических мышек, которые так называют из-за встроенных линз. Их конструктивная особенность состоит в наличии высокочувствительного датчика – камеры, которая непрерывно сканирует поверхность и передаёт результат на процессор. Частота снимков – несколько тысяч раз в секунду с разрешением до 40х40 пикселей.
Принцип действия оптической светодиодной мыши основан на излучении светодиодом широкого луча, который фокусируется первой линзой и образует яркое пятно в области захвата камеры, что позволяет фиксировать малейшие изменения на сканируемой поверхности. Полученная информация через вторую линзу поступает сенсор, а затем обрабатывается процессором.

В оптической лазерной мышке излучающим элементом служит лазерный полупроводниковый диод, чаще всего работающий в инфракрасном (ИК) спектре. В процессе работы тончайший луч проходит через первую линзу, достигает рабочей поверхности и отражается от неё. Для увеличения точности он фокусируется второй линзой и затем попадает в сенсор. Полученные снимки сравниваются, и по этим результатам делается вывод о перемещении курсора. В ходе совершенствования конструкции появились модели, у которых в одном корпусе размещен сенсор, процессор и лазерный диод.

Разрешающая способность

Этот параметр имеет принципиальное значение при выборе игровых мышек. Измеряют разрешающую способность в dpi (dots per inch) или cpi (counts per inch). Обе единицы измерения актуальны, но cpi более точно характеризует работу оптического манипулятора и показывает количество считываний на дюйм.

Чем выше dpi/ cpi, тем точнее курсор передвигается по экрану.

Вот простой пример. Разрешающая способность экрана по горизонтали 1600 dpi, а у мыши – 400 dpi. Это означает, что, передвигая манипулятор по столу на одну условную единицу, курсор сместится на экране на расстояние в 4 раза больше. С такой дискретностью трудно попадать курсором на мелкие значки программ, а об играх, где важна скорость и точность курсора мыши, можно забыть.

Для большинства оптических светодиодных мышек, рассчитанных на рядового пользователя, приемлемым считается показатель 800–1200 cpi. Этого вполне хватает для комфортной работы с офисными программами на мониторах с диагональю до 27 дюймов.

Разрешающая способность лазерных мышек имеет более широкий диапазон значений и может варьироваться от 1000 до 12000 cpi. Во многих моделях доступно несколько фиксированных значений cpi. За счет наличия собственной внутренней памяти и дополнительных кнопок, пользователь может в любой момент выбрать подходящее разрешение.

Скорость и ускорение

Большая часть оптических светодиодных мышек относится к бюджетному классу и в их характеристиках отсутствуют данные о скорости перемещения корпуса манипулятора.

У их лазерных коллег скорость передвижения и показатель ускорения – параметры, от которых зависит точность попадания курсора в заданную точку экрана как при плавном, так и при резком движении руки. Достаточно высокой считается скорость 150 дюймов в секунду с ускорением 30g, обеспечивая при этом точность в 8000 cpi. Чтобы обеспечить столь высокие показатели, возможности процессора должны быть соизмеримы с возможностями сенсора.

Энергопотребление

В проводных моделях этим показателем можно пренебречь, т. к. системный блок потребляет в 50-200 раз больше. А вот стабильная работа беспроводного девайса полностью зависит от батареек (аккумулятора), следовательно, на счету каждый милливатт потреблённой энергии.

Для светодиодной мышки нормой считается ток потребления около 100 мА с питанием 5В от USB, что составляет 0,5 Вт.

Энергопотребление мышки с лазерным диодом на порядок меньше. Такой беспроводной манипулятор, без подзарядки аккумулятора, способен прослужить в 10 раз дольше своего светодиодного аналога.

Возможности

В корпусе стандартной оптической мышки с красным светодиодом размещены три кнопки и колесо прокрутки. Этого достаточно для работы с программным обеспечением и интернетом. Есть модели с дополнительными кнопками, которым присваивают часто используемые функции при помощи макросов.

В описании мышки лазерного типа можно увидеть целый ряд характеристик, свидетельствующих о его возможностях. Большая часть из них влияет на точность и скорость перемещения курсора, что непременно важно при работе с графическими редакторами и в современных сетевых играх.

Требования к рабочей поверхности

Оптические светодиодные мышки традиционной конструкции, хотя и уступают новым разработкам, работают надёжно с большинством типов поверхностей и отличаются повышенной универсальностью. Для их стабильной работы с отсутствием рывков необходима ровная поверхность, которая может быть изготовлена из различных материалов. Исключение составляет лакированное дерево, стекло и зеркало. Прекрасная функциональная способность отмечена на многих видах тканей, в том числе с выраженной текстурой. Ещё одно достоинство мышек со светодиодом состоит в том, что они не критичны к величине рабочего зазора между корпусом и поверхностью. Поэтому они вполне приемлемы (но не идеальны) для управления компьютером с дивана или кровати.

Лазерный сенсор, несмотря на более точное позиционирование, весьма капризен в контакте с некоторыми материалами. Девайсам бюджетного класса противопоказаны глянцевые, полированные и покрытые лаком поверхности, а также любые неровности, которые увеличивают зазор и, тем самым, изменяют фокусное расстояние отраженного луча. Идеальным вариантом для геймеров будет плоскость с четкой структурой (рисунком) или коврик.

В ходе совершенствования лазерных манипуляторов набирает обороты технология G-laser, разработчики которой заявляют об отличной работе устройств на всех видах поверхностей, включая стекло и гладкий пластик. Однако критичность к зазору вынуждает их применять только на ровной плоскости.

Стоимость

Утверждение: «Светодиодные мышки дешевле лазерных» не совсем корректно. Фирменные LED модели с оригинальным дизайном и дополнительными функциями могут по цене превосходить простые аналоги на лазерном диоде. Но если сравнивать продукты одного изготовителя, то разница между моделями с разным принципом действия ощутима.

Выбирая оптическую беспроводную мышку, лучше отдать предпочтение более дорогому изделию лазерного типа, чтобы впоследствии намного реже менять батарейки. Недорогие проводные мыши на светодиоде отлично подойдут для домашнего ПК.

Одним из пунктов выбора лазерной мышки должно стать её тестирование непосредственно в магазине на разных поверхностях.

Кроме технических показателей, немаловажным свойством каждой мышки является эргономичность. Привлекательный внешний вид и удобное расположение в руке являются обязательным условием выбора. В противном случае пользователь будет получать порцию нервного раздражения при каждом несоответствии движений руки с перемещением курсора на мониторе.

Читайте так же


Продолжаем делать мини-обзоры наиболее популярных сенсоров мыши. Сегодня речь пойдет о сенсорах средней руки - не самых лучших, но покупка которых в определенных ситуациях может быть вполне оправдана.


Если вы знаете, какой сенсор установлен в вашей будущей мышке, вы можете еще до покупки узнать о достоинствах и недостатках той или иной модели устройства. Однако следует помнить, что реализация одного и того же сенсора может отличаться в зависимости от производителя.

Разговор пойдет о сенсорах среднего сегмента в техническом плане (не в ценовом).

Pixart A9800 (А9500)

По ощущениям, лазерный оптический сенсор А9800 занимает свыше 95% рынка лазерных мышек. А9800 и его предшественник А9500 (технически они не сильно различаются) является первым и единственным лазерным сенсором, который действительно можно назвать игровым.

Технические характеристики впечатляют:

Скорость работы >4,5 м/с
- ускорение 30G
- скорость фотографирования поверхности 12000 fps
- регулируемая высота отрыва
- большая светочувствительная матрица 30х30 пикселей
- 8200 dpi(cpi) с шагом 50 (dpi и шаг могут отличаться у разных производителей)

Технически все идельно. Но что-то с этим сенсором не так. Ведь 99% профессиональных игроков в Counter-Strike используют именно оптические мыши, а не лазерные.

Главная проблема лазерного сенсора А9800 (и соответственно А9500) - это СЛУЧАЙНАЯ АКСЕЛЕРАЦИЯ, достигающая 5-6%. Что такое акселерация можно прочитать . Говоря простым языком, А9800 имеет довольно большую случайную погрешность. И это факт. Об этом говорят и создатели игровых устройств, и данные различных тестов.

Акселерация А9800 является следствием особенностей лазерного излучения. Она физически "зашита" в сенсор и программно никак не убирается.

Важно знать, что эффект акселерации в А9800 (А9500) можно существенно уменьшить, если использовать в качестве поверхности коврики из твердых материалов: пластмасса, алюминий. Но это создает пользователю лишние проблемы: такие ковры дороже и имеют свойство истираться и истирать ножки мышек.

Любители теории заговора могут также порассуждать на тему: почему капитан команды Natus Vincere - Zeus не считается крутым аимером? Может потом, что уже очень долго использует SteelSeries Xai (A9500) а сочетании с тряпичным ковром? А бывший игрок вышеназванной команды Ceh9 понял, что "не тащит" разве не после того, как пересел на SteelSeries Sensei (A9800)? Совпадение? Не думаю!

К сожалению, пока не удалось найти объективную информацию по акселерации в новых модифицированных вариантах А9800 (Razer Taipan, Logitech g500s). Имеющиеся данные противоречивы.

В интернете также можно найти информацию,будто бы акселерация в А9800 была исправлена новой прошивкой. Это не так! Вброс действительно был получен от сотрудника одного из производителей игровых устройств, но он имел в виду отсутствие алгоритма "сглаживания" в последних версиях прошивки А9800. С включенным сглаживанием задержка А9800 при высоких значениях dpi могла достигать более 20 мс.

Выводы: во многом А9800 прекрасен: точно считает углы, тонко настраивается. Кроме того, на рынке просто ОГРОМНЕЙШИЙ ВЫБОР мышек с этим сенсором. Каждый найдет форму/размер/вес на свой вкус. Но проблема с акселерацией не позволяет причислить его к "лику святых". А9800 остается отличным выбором для игр типа Dota 2, League of Legends и т.д. Для Counter-Strike лучше поискать что-нибудь другое.

А3090

А3090 впервые появился во второй версии Logitech G400 и получил маркировку S3095 (видимо Logitech вносили какие-то свои изменения). Позже сенсор стал окрытым и для других производителей.

Техническая часть:
- максимальная скорость: до 4.5 м/с (может быть существенно ниже на некоторых моделях)
- матрица 30х30 (А3090 является приемником А3080/А3060)
- 6400 fps
- LED-подстветка (красная), инфракрасная в Roccat Savu.
- максимальные dpi зависят от прошивки: 3500 на более ранеей и 4000 на поздних.
- нативные dpi сенсора: 1800/3500 (3500 dpi версия) и 800/4000 (4000 dpi версия)
- высота отрыва существенно зависит от конкретной реализации, но чаще всего довольно высокая

А3090 дал начало новой эры топовых сенсоров: высокая скорость работы без существенной акселерации, отсутствие угловой привязки (и вообще углы неплохо считает), низкий уровень шума.

Многие производители испытывали сложности с А3090 в плане технической реализации. Как правило, это касается высота отрыва и максимальной скорости работы. Но в целом, на 800 dpi сенсор ведет себя отлично практически на всех моделях (прошивка 4000 dpi).

Во многих вариантах А3090 применяется технология "сглаживания" (smoothing ). Суть в том, что мышь не выдает результаты трекинга сразу, а применяет в данным некоторый алгоритм обработки. Это позволяет существенно уменьшить уровень шума на высоких dpi, но привносит некоторую специфику в работу сенсора. Может ощущаться задержка отклика мыши, некоторая неточность при маленьких движениях, неестественность при быстрых длинных переводах. Вероятно, при 800 dpi сглаживание в А3090 не используется, либо его эффект не заметен.

В 4000 dpi версии A3090 могут быть проблемы с мертвой зоной. Когда вы начинаете движение, мышь реагирует не сразу, а с некоторой задержкой, что может приводить к движению "рывками" и пропускам пикселей.

Популярные мыши на сенсоре А3090: Zowie AM/FK/EC-evo, Logitech G400/G400s, SteelSeries Kana V2, Roccat Savu.

На сегодняшний день все крупные бренды отказались от выпуска мышек с А3090 в пользу более свежих PMW3310 и S3988. Тем не менее, на рынке остались некоторые модели от малоизвестных производителей за небольшую цену: Hama uRage, Genius Maurus X и др. Кроме того, всегда можно купить подержанную мышь из high-end сегмента.

Logitech g400s. Версия 4000 dpi. (c) gamezone.com

Выводы: А3090 может быть хорошим вариантом на небольшую цену, если вас устраивает 800 dpi.


SDNS-SS-3059

SS-3059 явлется модифицированным вариантом А3050. В настоящее время производится исключительно для SteelSeries Rival 100. Ключевые отличия по сравнению с исходным А3050:

Сведена к минимуму акселерация
- предельная скорость работы увеличина с 3 до 4.5 м/с

В итоге получился очень неплохой сенсор. Но, как и в случае предшественника, dpi лучше ставить поменьше. Также остаются вопросы по точности обсчета углов.

Rival 100 уже засветился в элите Counter-Strike: Global Offensive: на нем играет Dupreeh - лучший игрок команды Astralis.

50 оттенков Rival 100. (c) lelong.com.my

AM010 и PMW3320

AM010 представлен линейкой игровых мышей компании Logitech: модели g100s, g302, g402. По-видимому, данный сенсор - это совместная разработка Logitech и Pixart. PMW3320 является открытой версией AM010, с некоторыми изменениями, в частности увеличен фреймрейт с около 3000 до 5000+ fps.

AM010 отлично проявил себя в мышках Logitech. Практически нулевая акселерация (обходит даже топовые 3310 и 3988) и максимальная скорость свыше 3 м/с. Наверное, лучший сенсор по соотношению цена/качество. Единственное слабое место - обсчет углов. Высота отрыва также относительно высокая. На сегодняшний день АМ010 морально устарел, и, скорее всего, в новых моделях мы его не увидим.

В этом отношении PMW3320 явлется крайне перспективным сенсором. 3320 появился на рынке в конце 2015 года, и количество мышек с этим сенсором постоянно увеличивается. CM Storm Xornet 2, Azio Exo 1, Ozone Neon 3k, Roccat Kova 2016, QPad DX-20 построены на PMW3320

В теории, 3320 должен сохранить все лучшие качества AM010 при этом должен улучшиться обсчет углов засчет увеличенного фреймрейта. Однако, судя по первым обзорам, не у всех производителей получилось справиться с новым сенсором. Где-то проблемы с шагом dpi, где-то с максимальной скоростью.

Вероятно, PMW3320 - это также будущее компании A4tech. В этом случае, А4tech сильно продвинется в соотношении цена/качество (естественно, при нормальной реализации сенсора).

На этом средние сенсоры закончились. На очереди разговор о топовом сегменте рынка. В следующей части мы посмотрим, чем отличается PWM3310 от S3988, и узнаем, какой же сенсор самый мощный на сегодняшний день.

Подобный вопрос довольно часто всплывает на различных геймерских форумах. Даже после долгих и бурных обсуждений форумчане, как правило, приходят к выводу – мышка должна просто устраивать вас в тех играх, в которых вы чаще всего «зависаете». Чаще всего даже не разрешение или тип датчика являются основными приоритетами при выборе той или иной модели.

Игровые мышки в первую очередь должны быть максимально удобны для каждой конкретной ладони. Непривередливые геймеры обычно довольствуются среднестатистическими эргономичными мышками, продвинутые приобретают дорогие девайсы с изменяемой геометрией корпуса.

Те, кто играет в RPG или стратегии не особенно заморачиваются на весе мышки. А вот любители шутеров обычно обращают на это внимание. И потому выбирают мышки с возможностью регулировки веса и центра тяжести.

Также немаловажным параметром является наличие дополнительных кнопок и возможность записи на них макросов с комбинациями тех или иных действий.

Наконец, что особенно важно, игровые мышки создаются в первую очередь со значительно большим запасом прочности и долговечности, нежели обычные «офисные».

Что же касается конструкции и разрешения, то здесь есть несколько нюансов.

Лазерные мышки, как правило, намного точнее, чем оптические. Однако последние отлично работают буквально на любых поверхностях, даже неровных. Лазерные же мышки крайне капризны в этом параметре. Приподняв мышку даже на долю миллиметра над ковриком, вы сразу же «теряете» контроль над курсором или, если это игра – прицелом. С оптической мышкой такого не произойдет. Кроме того, даже маленькая соринка, попавшая под сенсор лазерной мышки, может привести к «прыжку» курсора, что иногда в игре может стоить вашей жизни, пусть и виртуальной.

Если говорить о разрешении сенсора, то, конечно же, у оптических мышек оно обычно не превышает 800 dpi. Игровые мышки чаще всего лазерные и имеют возможность регулировки разрешения сенсора от скромных 400 до 2000 (и даже 5200 dpi у топовых моделей).

К слову, объективно обозначение «DPI» не слишком корректный термин и используется скорее для обозначения значения разрешения при печати . По отношению к сенсору мышки намного корректнее было бы говорить «CPI», то есть Count Per Inch, то есть количество «значений» на дюйм. Фактически это число «изменений» положения мышки, которое фиксирует датчик при перемещении ее на один дюйм.

На практике это выражается так: чем выше разрешение, тем медленнее двигается курсор или, если хотите – прицел. С одной стороны повышается точность наведения, но с другой – ухудшается скорость прицеливания.

На сегодняшний день оптимальными параметрами разрешения сенсора мышки считаются: 400-600 для работы, 600-800 для шутеров и 900-1200 для стратегий и RPG, включая MMO.

В любом случае, выбирая игровую мышку, обрате внимание на то, как она лежит у вас в руке. От этого напрямую зависит удовольствие, которое вы получите от процесса игры. А потом уже обращайте внимание на количество возможных разрешений сенсора, возможность регулировки веса и центра тяжести и, конечно же – наличию дополнительных кнопок, желательно с возможностью записи макросов .

Иван Ковалев

Существует множество типов и вариантов исполнения ковриков для мышек. Они могут иметь рабочую поверхностью из ткани, мягкого или твердого пластика, металла. Первый вариант самый дешевый и, как ни странно, один из самых лучших. Для мягкого пластика, да и для жесткого тоже, существуют варианты исполнения под оптические и лазерные мышки.

Для тестов использовались обычные коврики Nova MicrOptic+ и Defender Ergo opti-laser. Внешний вид у них примерно одинаковый:

По заверениям обоих производителей эти коврики оптимизированы для работы с лазерными мышками. Проверим.

Для начала снимки поверхности с увеличением:

Кое-какие отличия есть, но не особенно заметные. У коврика Nova зерна меньше и не так явно выражены. Значит он хуже?

Теперь посмотрим на коврики глазами оптического датчика:

Согласитесь, что отличие есть и весьма кардинальные. На коврике Nova отчетливо видна высококонтрастная структура, а вот Defender дал какое-то "мыло". Скорее всего, это связано с размерами "гранул". У лазерных датчиков, в отличие от оптических, видимый размер окна уменьшен. Похоже, на коврике Defender размер гранул больше окна и датчик захватывает только их часть, постоянно переключаясь между монотонно светлыми и темными участками. Для сравнения, приведу фотографии поверхности пластика .

Правый рисунок получен из левого повышением контрастности. Мышка эту поверхность видит так:

На такой поверхности "офисные" оптические мышки совсем не работают, а вот лазерные как-то умудряются работать и весьма успешно.

Высота отрыва

Что Вы делаете, когда мышка доходит до края коврика? Вы поднимаете мышку и переставляете на новое место, в центр коврика. Оптический датчик обладает высокой чувствительностью и при подъеме пытается сохранить нормальное функционирование, постоянно подстраивая параметры аппаратуры. Как следствие, при подъеме мышки над поверхностью снижается скорость. Точнее, скорость то не снижается, а довольно резко падает качество и достоверность определения движения. Теоретически, при снижении качества поверхности ниже разумного, оптический датчик должен перестать выдавать движение. То есть, при некотором подъеме мышки он должен бы не замечать, что мышь подняли, а если ее еще хоть чуть поднять, то просто перестать передавать движение. Это в идеале, но в реальных мышках при ухудшении поверхности происходит деградация качества движения, передаваемого мышью. Причем, этот вредный эффект зависит от скорости перемещения, из-за чего к такой мышке труднее привыкнуть.

Высота отрыва светодиодных мышек 1.5-2 мм, для лазерных версий цифра больше и составляет уже 2.5-4 мм. Это все цифры, а в реальности такой мышкой неудобно пользоваться даже для офисных приложений, очень уж высоко приходится поднимать ее над ковриком. По моим личным впечатлениям, высота срыва в 1.5-2 мм довольно комфортна. А что же делать с лазерными мышками и их высотой срыва 4 мм?

Давайте возьмем одну за хвост и посмотрим на внутренности. Сейчас распространены мышки на датчике Avago(ссылка на http://www.avagotech.com) ADNS-6010

Чтоб особо не умничать, взял картинку из документации.

Пояснения:

  • Sensor - микросхема ADNS-6010, которая и является датчиком, считывающем движение
  • Sensor PCB - печатная плата мышки
  • VCSEL - лазерный излучатель. Просто небольшой полупроводниковый лазер с посредственным углом расхода луча.
  • VCSEL PCB - небольшая печатная платка, на которой смонтирован лазер.
  • VCSEL Clip - пластиковая защелка, фиксирует лазер в оптической системе. На картинке светло желтого цвета.
  • Lens - оптическая система из прозрачного пластика, блекло-желтого цвета.
  • Surface - поверхность, по которой движется мышь.
  • На этом рисунке указана цифра 2.4 мм - это оптимальное расстояние от дна оптической системы до поверхности. Один момент - дно мышки имеет какую-то толщину, поэтому расстояние от поверхности до дна мышки будет меньше на толщину этого дна.

    А от чего же зависит высота отрыва и почему на оптических мышках эта высота меньше? Посмотрим другую картинку:

    Позволил себе проявить самодеятельность раскрасить некоторые важные элементы конструкции.

    Желтым цветом выделены линзы оптической системы, серым - световой поток лазера. Зеленый - зона видимости оптического датчика. Зона "видимости" датчика определяется только его фокусом и способностью работать с расфокусированным изображением. Чем выше скорость перемещения картинки, тем должна-бы быть хуже устойчивость для несфокучированных объектов. Если посмотреть данные тестирования, то так и выходит. Высота срыва в 4 мм не функциональна, я попробовал уменьшить эту величину несколько изменив принцип работы - потеря изображения датчиком может быть получена не за счет ухудшения фокусировки, а из-за ухода светового пятна из зоны видимости датчика. Примерно так работают светодиодные мышки. Для этого я увеличил угол луча подсветки с 21 градусов до, примерно, 50 градусов от вертикали.

    При подъеме мышки пятно подсветки (серый луч) выходит из видимого окна датчика (зеленая зона).

    Методика доработки не особо трудна - надо распилить оптический блок по вертикальной черте и не задеть линзы. В крайнем случае, можно чуть-чуть повредить линзу подсветки, она не столь важна. Скрепить две составные части можно термоплавким клеем, на рисунке отмечено коричневым.

    Он обладает достаточной жесткостью и прочностью соединения, при этом позволяя осуществлять многократную коррекцию положения склеенных частей оптики. При наклоне подсветки часть его конструкции выйдет за габариты блока оптики и его придется немного подпилить, на рисунке отмечено голубым цветом.

    К сожалению, блок подсветки надо не только наклонить, но и сдвинуть вниз, из-за чего линза подсветки окажется ниже уровня оптики. Это плохо, в дне мышки придется выплавлять небольшую вмятину под выступ. Впрочем, это не сложно и не мешает, ведь линза выходит за габариты совсем чуть-чуть. Лазерный модуль закреплялся на оптике с помощью защелки VCSEL Clip. Сейчас ее придется убрать и закрепить каплей клея или герметика. Хотя, он и так там неплохо держится. У такого построения есть одна особенность - луч подсветки падает на поверхность с другим углом, чем угол зрения датчика. В результате, между плоскостью поверхности и плоскостью отражения образуется угол около 15 градусов.

    Черный - луч на не доработанной оптической системе, зеленый - после доработки. Поверхность для доработанного случая условно поднята, чтобы она не сливалась с нормальным режимом. Датчик смотрит как бы сбоку на поверхность и четче видит все неровности на ней. Дополнительный наклон подсветки дает дополнительную модуляцию яркости при прохождении объемных областей под объективом. Хорошо сие или плохо - зависит от коврика, фактуры его поверхности. К слову, если снять картинки поверхности коврика Nova на этой, доработанной, мышке, то на фото не будет таких четких граней. И, скорее всего, дело не в фокусировке. Просто изменился угол зрения и четкие структуры коврика исчезли. На этой мышке коврик Nova и Defender выглядят почти одинаково. Впрочем, мышка хорошо ходит по обеим поверхностям. Увы, есть и явный недостаток - из-за того, что поверхность отражения наклонена относительно поверхности коврика, уменьшается общий уровнь освещенности и возникает необходимость увеличения тока лазера подсветки. Обычно он составляет цифру в районе восьми миллиампер. После доработки пришлось повысить ток до 12 миллиампер. Это уже многовато, но в пределах доступного.

    Если Вы дорабатывается обычную, серийную мышь, то хорошо бы несколько помочь схеме автоматического управления током лазера. В документации на датчик ADNS-6010 упоминается резистор Rbin с 13 вывода микросхемы. Обычно, его номинал 12.7 ком. Для того, чтобы подправить ток, надо уменьшить его номинал. Для моего случая хорошо-бы увеличить ток в 1.5 раза, что означает припаивание параллельно этому резистору еще одного с номиналом в 2 раза больше, т.е. 24-27-30KOm. И еще пара поверхностей - тканевая и лист алюминия. Довольно часто слышно рекомендации применять эти поверхности, они дают весьма неплохие результаты.

    Вначале на мышке с не модифицированной оптикой (W-Mouse 730). Ткань:

    Лист алюминия:

    И мышка после модификации оптического блока (W-Mouse 750).

    Лист алюминия:

    На поверхности с объемным рельефом модификация оптики приводит к большей заметности этого рельефа. А вот картинка с листа алюминия выглядит скорее хуже, но не столь существенно. Бесплатно ничего не бывает. Тронули оптику - получили проблемы с фокусировкой.

    Рекомендация - при повторении подобной доработки не увлекайтесь! Вряд ли стоит настолько сильно увеличивать угол блока подсветки, ведь высота срыва получается слишком малой и появляются неприятные проблемы с упихиванием в корпус и увеличением тока лазера.

    Есть и более простой способ уменьшить высоту срыва - поставить кнопку на дно мышки и при ее подъеме отключать, блокировать датчик. Средств воздействия много, вначале я пробовал отключать лазер, но контроллер в А4 умный и, если просто размыкать ток лазера, контроллер очень быстро это замечает и отключает мышь. Увы, отключает совсем, приходится перетыкать разъем USB, придется поступать не столь прямолинейно. Есть предложение при отключении лазера подсоединять вместо него пару кремниевых диодов, но это потребует установку дополнительных компонентов. Я поступил иначе - воздействовал на резистор Rbin (смотрите документацию на датчик ADNS-6010), при увеличении его номинала система авторегулирования пытается выставить такой ток. Если Rbin отсоединять или делать очень большим, то лазер фактически отключится, но это не вызовет каких-то проблем внутри системы регулирования.

    Саму "кнопку" я взял из дисковода 3.5" с датчика наличия дискеты. Усилие небольшое, но и его пришлось немного ослабить. Идея работала хорошо, высоту можно подобрать какую заблагорассудится, вот только пластмассовый штифт кнопки быстро стачивается.

    Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!