Настройка оборудования и программного обеспечения

Какая топология используется в домашних локальных сетях. Топология локальных сетей

Сеть - это группа компьютеров, соединенных друг с другом каналом связи. Канал обеспечивает обмен данными внутри сети (то есть обмен данными между компьютерами данной группы). Сеть может состоять из двух-трех компьютеров, а может объединять несколько тысяч ПК. Физически обмен данными между компьютерами может осуществляться по специальному кабелю, телефонной линии, волоконно-оптическому кабелю или по радиоканалу.

Компьютеры в сети можно соединять:

  • · непосредственно друг с другом (так называемое двухточечное соединение);
  • · через промежуточные узлы связи .

Компьютеры, подключенные к сети, могут выполнять две функции: они могут быть рабочими станциями или серверами.

Рабочая станция - это любой рабочий компьютер в сети, не являющийся сервером, как правило, за ними работают пользователи. Требования к рабочим станциям определяются кругом задач станции. Обычно главными требованиями являются требования к быстродействию и к объему оперативной памяти.

Серверы - это компьютеры, которые управляют всей сетью и накапливают у себя все данные рабочих станций. Серверы могут работать в автоматическом режиме - они стоят без клавиатуры и иногда даже без монитора, но в любом случае серверы осуществляют функции управления сетью и концентрации данных. Администратор сети - лицо, в обязанности которого входят все вопросы, связанные с установкой и эксплуатацией сети, а также решение всех проблем, связанных с правами и возможностями пользователей сети.

Обычно в качестве сервера выбирается самый большой и мощный компьютер в сети. Однако развитие компьютерной техники явно ведет к уменьшению внутренних компонентов - компьютер становится быстрее и экономичнее. Поэтому за короткий срок сервер может устареть быстрее, чем обычные компьютеры, к которым не предъявляются такие высокие требования.

Принято различать локальные и глобальные сети. В сущности, главная разница между ними понятна уже по названиям, но есть и некоторые существенные технологические отличия.

Локальные сети (от английского local - местный) - это сети, состоящие из близко расположенных компьютеров, чаще всего находящихся в одной комнате, в одном здании или в близко расположенных зданиях. Локальные компьютерные сети, охватывающие некое предприятие или фирму и объединяющие разнородные вычислительные ресурсы в единой среде, называют корпоративными (от английского corporate - корпоративный, общий). Примеры: банковская сеть, сеть учебного заведения.

Важнейшей характеристикой локальных сетей является скорость передачи данных, поэтому компьютеры соединяются с помощью высокоскоростных адаптеров со скоростью передачи данных не менее 10 Мбит/с. В локальных сетях применяются высокоскоростные цифровые линии связи. Кроме того, локальные сети должны легко адаптироваться, обладать гибкостью: пользователи должны иметь возможность располагать компьютеры, подключенные к сети там, где понадобится, добавлять или перемещать компьютеры или другие устройства, а также по необходимости отключать их без прерываний в работе сети.

Объединение компьютеров в единую сеть предоставляет пользователям сети новые возможности, несравнимые с возможностями отдельных компьютеров. Сеть - это не сложение, а умножение возможностей отдельных компьютеров. Локальная сеть позволяет организовать передачу файлов из одного компьютера в другой или другие, совместно использовать вычислительные и аппаратные ресурсы, совмещать распределенную обработку данных на нескольких компьютерах с централизованным хранением информации и многое другое. С помощью компьютерной локальной сети осуществляется коллективное использование технических ресурсов, что благотворно воздействует на психологию и поведение пользователя не только в сети, но и в реальной жизни.

Топология локальных сетей

Топология - это конфигурация сети, способ соединения элементов сети (то есть компьютеров) друг с другом. Чаще всего встречаются три способа объединения компьютеров в локальную сеть: «звезда», «общая шина» и «кольцо» .

Соединение типа «звезда» (рис. 1). Каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединить вместе несколько сетей с топологией «звезда», при этом конфигурация сети получается разветвленной.

Достоинства: При соединении типа «звезда» легко искать неисправность в сети.

Недостатки: Соединение не всегда надежно, поскольку выход из строя центрального узла может привести к остановке сети.

Соединение «общая шина» (рис. 2). Все компьютеры сети подключаются к одному кабелю; этот кабель используется совместно всеми рабочими станциями по очереди. При таком типе соединения все сообщения, посылаемые каждым отдельным компьютером, принимаются всеми остальными компьютерами в сети.

Достоинства: в топологии «общая шина» выход из строя отдельных компьютеров не приводит всю сеть к остановке.

программный файловый операционный драйвер

Недостатки: несколько труднее найти неисправность в кабеле и при обрыве кабеля (единого для всей сети) нарушается работа всей сети.

Соединение типа «кольцо» (рис. 3). Данные передаются от одного компьютера к другому; при этом если один компьютер получает данные, предназначенные для другого компьютера, то он передает их дальше (по кольцу).

Достоинства: балансировка нагрузки, возможность и удобство прокладки кабеля.

Недостатки: физические ограничения на общую протяженность сети.

От схемы зависит состав оборудования и программного обеспечения. Топологию выбирают, исходя из потребностей предприятия. Если предприятие занимает многоэтажное здание, то в нем может быть применена схема «снежинка» (рис. 4), в которой имеются файловые серверы для разных рабочих групп и один центральный сервер для всего предприятия.

Топология компьютерных сетей

Одним из важнейших различий между разными типами сетей является их топология.

Под топологией обычно понимают взаимное расположение друг относительно друга узлов сети. К узлам сети в данном случае относятся компьютеры, концентраторы, свитчи, маршрутизаторы, точки доступа и т.п.

Топология – это конфигурация физических связей между узлами сети. Характеристики сети зависят от типа устанавливаемой топологии. В частности, выбор той или иной топологии влияет:

  • на состав необходимого сетевого оборудования;
  • на возможности сетевого оборудования;
  • на возможности расширения сети;
  • на способ управления сетью.

Различают следующие основные виды топологий: щит, кольцо, звезда, ячеистая топология и решетка. Остальные являются комбинациями основных топологий и называются смешанными или гибридными.

Шина . Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются специальные заглушки – терминаторы (terminator). Они необходимы для того,

Рис. 6.1.

чтобы погасить сигнал после прохождения по шине. К недостаткам шинной топологии следует отнести следующее:

  • данные, передаваемые по кабелю, доступны всем подключенным компьютерам;
  • в случае повреждения шины вся сеть перестает функционировать.

Кольцо – это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передаст и подразумевает следующий механизм передачи данных: данные передаются последовательно от одного компьютера к другому, пока не достигнут компьютера-получателя. Недостатки топологии "кольцо" те же, что и у топологии "шина":

  • общедоступность данных;
  • неустойчивость к повреждениям кабельной системы.

Звезда – это единственная топология сети с явно выделенным центром, называемым сетевым концентратором или "хабом" (hub), к которому подключаются все остальные абоненты. Функциональность сети зависит от состояния этого концентратора. В топологии "звезда" прямые соединения двух компьютеров в сети отсутствуют. Благодаря этому имеется возможность решения проблемы общедоступности данных, а также повышается устойчивость к повреждениям кабельной системы.

Рис. 6.2.

Рис. 6.3. Топология типа "звезда"

– это топология компьютерной сети, в которой каждая рабочая станция сети соединяется с несколькими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведет к потере соединения между двумя компьютерами.

Рис. 6.4.

Решетка – это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси. Одномерная решетка – это цепь, соединяющая два внешних узла (имеющие лишь одного соседа) через некоторое количество внутренних (у которых по два соседа – слева и справа). При соединении обоих внешних узлов получается топология "кольцо". Двух- и трехмерные решетки используются в архитектуре суперкомпьютеров.

Сети, основанные па FDDI, используют топологию "двойное кольцо", достигая тем самым высокой надежности и производительности. Многомерная решетка, соединенная циклически в более чем одном измерении, называется "тор".

(рис. 6.5) – топология, преобладающая в крупных сетях с произвольными связями между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети ), имеющие типовою топологию, поэтому их называют сетями со смешанной топологией.

Для подключения большого числа узлов сети применяют сетевые усилители и (или) коммутаторы. Также применяются активные концентраторы – коммутаторы, одновременно обладающие и функциями усилителя. На практике используют два вида активных концентраторов, обеспечивающих подключение 8 или 16 линий.

Рис. 6.5.

Другой тип коммутационного устройства – пассивный концентратор, который позволяет организовать разветвление сети для трех рабочих станций. Малое число присоединяемых узлов означает, что пассивный концентратор не нуждается в усилителе. Такие концентраторы применяются в тех случаях, когда расстояние до рабочей станции не превышает нескольких десятков метров.

По сравнению с шинной или кольцевой смешанная топология обладает большей надежностью. Выход из строя одного из компонентов сети в большинстве случаев не оказывает влияния на общую работоспособность сети.

Рассмотренные выше топологии локальных сетей являются основными, т. е. базовыми. Реальные вычислительные сети строят, основываясь на задачах, которые призвана решить данная локальная сеть, и па структуре ее информационных потоков. Таким образом, на практике топология вычислительных сетей представляет собой синтез традиционных типов топологий.

Основные характеристики современных компьютерных сетей

Качество работы сети характеризуют следующие свойства: производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость.

К основным характеристикам производительности сети относятся:

  • время реакции – характеристика, которая определяется как время между возникновением запроса к какому-либо сетевому сервису и получением ответа на него;
  • пропускная способность – характеристика, которая отражает объем данных, переданных сетью в единицу времени;
  • задержка передачи – интервал между моментом поступления пакета на вход какого-либо сетевого устройства и моментом его появления на выходе этого устройства.

Для оценки надежности сетей используются различные характеристики, в том числе:

  • коэффициент готовности, означающий долю времени, в течение которого система может быть использована;
  • безопасность, т.е. способность системы защитить данные от несанкционированного доступа;
  • отказоустойчивость – способность системы работать в условиях отказа некоторых ее элементов.

Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, сервисов), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.

Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.

Прозрачность – свойство сети скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сети.

Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.

Совместимость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение.

На скорость передачи данных в сети, на надежность обслуживания запросов клиентов, на устойчивость сети к отказам оборудования, на стоимость создания и эксплуатации сети значительное влияние оказывает ее топология.

Под топологией компьютерной сети понимается способ соединения ее отдельных компонентов (компьютеров, серверов, принтеров и т.д.). Различают следующие основные топологии:

· топология типа звезда;

· топология типа кольцо;

· топология типа общая шина;

· древовидная топология;

· полносвязная сеть.

Рассмотрим данные топологии сетей.

Топология типа звезда . При использовании топологии типа звезда информация между клиентами сети передается через единый центральный узел (Рис. 11). В качестве центрального узла может выступать сервер или специальное устройство – концентратор (Hub).

Рис. 11. Топология типа звезда

В топологии звезда могут использоваться активные и пассивные концентраторы. Активные концентраторы принимают и усиливают передаваемые сигналы. Пассивные концентраторы пропускают через себя сигналы, не усиливая их. Пассивные концентраторы не требуют подключения к источнику питания.

Преимущества топологии звезда состоят в следующем:

1. Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла.

2. Отсутствие столкновения передаваемых данных, так как данные между рабочей станцией и сервером передаются по отдельному каналу, не затрагивая другие компьютеры.

Однако помимо достоинств у данной топологии есть и недостатки:

1. Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный узел (сервер или концентратор) выйдет из строя, то работа всей сети прекратится.

2. Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

3. Отсутствие возможности выбора различных маршрутов для установления связи между абонентами.

Данная топология в настоящее время является самой распространенной.

Топология типа кольцо . При топологии кольцо все компьютеры подключаются к кабелю, замкнутому в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер (рис. 12).

Рис. 12. Топология типа кольцо

Передача информации в данной сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который хочет передать данные. Получив маркер, компьютер создает так называемый пакет, который используется для передачи данных. В пакет помещается адрес получателя и данные, а затем он отправляется по кольцу. Пакет проходит через каждый компьютер, пока не окажется у того, чей адрес совпадает с адресом получателя. После этого принимающий компьютер посылает источнику информации подтверждение факта получения пакета. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Преимущества топологии типа кольцо состоят в следующем:

1. Пересылка сообщений является очень эффективной, т.к. можно отправлять несколько сообщений друг за другом по кольцу. Т.е. компьютер, отправив первое сообщение, может отправлять за ним следующее сообщение, не дожидаясь, когда первое достигнет адресата.

2. Протяженность сети может быть значительной. Т.е. компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала.

3. Отсутствие коллизий (см. тему №3, раздел 2) и столкновения данных, так как передачу в каждый момент времени ведет только один компьютер.

К недостаткам данной топологии относятся:

1. Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы.

2. Для подключения нового клиента необходимо прервать работу в сети.

3. При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены.

4. Общая производительность сети определяется производи­тельностью самого медленного компьютера .

Данная топология выигрывает в том случае, если в организации создается система распределенных центров обработки информации, расположенных на значительном расстоянии друг от друга.

Топология типа общая шина . При шинной топологии все клиенты подключены к общему каналу передачи данных (рис. 13). При этом они могут непосредственно вступать в контакт с любым компьютером, имеющимся в сети.

Рис.13. Топология типа общая шина

Передача информациипроисходит следующим образом. Данные в виде электрических сигналов передаются всем компьютерам сети. Однако информацию принимает только тот, адрес которого соответствует адресу получателя. Причем в каждый момент времени только один компьютер может вести передачу.

Преимущества топологии общая шина:

1. Вся информация находится в сети и доступна каждому компьютеру. Т.е. с любого персонального компьютера можно получить доступ к информации, которая храниться на любом другом компьютере.

2. Рабочие станции можно подключать независимо друг от друга. Т.е. при подключении нового абонента нет необходимости останавливать передачу информации в сети.

3. Построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента.

4. Сеть обладает высокой надежностью, т.к. работоспособность сети не зависит от работоспособности отдельных компьютеров.

Последнее преимущество определяется тем, что шина является пассивной топологией. Т.е. компьютеры только принимают передаваемые данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных.

К недостаткам топологии типа общая шина относятся:

1. Низкая скорость передачи данных, так как вся информация циркулирует по одному каналу (шине).

2. Быстродействие сети зависит от числа подключенных компьютеров. Чем больше компьютеров подключено к сети, тем больше загружена шина и тем медленнее идет передача информации от одного компьютера к другому.

3. Для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

Древовидная топология . В сетях с древовидной топологией компьютеры непосредственно связаны с центральными узлами сети – серверами (Рис. 14).

Рис.14. Древовидная топология

Древовидная топология представляет собой комбинацию топологии типа звезда и топологии типа общая шина. Поэтому ей в основном присущи те же преимущества и недостатки, которые были указаны для данных топологий.

Полносвязная вычислительная сеть . В полносвязной сети каждый компьютер соединен со всеми другими компьютерами отдельными линиями (рис. 15).

Рис.15. Полносвязная вычислительная сеть

Преимущества полносвязной сети:

1. Высокая надежность, так как при отказе любого канала связи будет найден обходной путь для передачи информации.

2. Высокое быстродействие, так как информация между компьютерами передается по отдельным линиям.

Недостатки данной топологии:

1. Данная топология требует большого числа соединительных линий, т.е. стоимость создания подобной сети очень высокая.

2. Трудность построения сети при большом количестве компьютеров, так как от каждого компьютера к остальным необходимо прокладывать отдельные линии.

Топология полносвязной сети обычно применяется для малых сетей с небольшим количеством компьютеров, которые работают с полной загрузкой каналов связи.

Для крупных вычислительных сетей (глобальных или региональных) обычно применяется комбинация различных топологией для разных участков.

Модели ЛВС

Существует две модели локальных вычислительных сетей:

· одноранговая сеть;

· сеть типа клиент-сервер.

В одноранговой сети все компьютеры равноправны между собой. При этом вся информация в системе распределена между отдельными компьютерами. Любой пользователь может разрешить или запретить доступ к своим данным. В таких сетях на всех компьютерах устанавливаются однотипные операционные системы (ОС), которые предоставляет всем компьютерам в сети потенциально равные возможности.

Достоинстваданной модели:

1. Простота реализации. Для реализации данной сети достаточно наличия в компьютерах сетевых адаптеров и кабеля, которых их соединит.

2. Низкая стоимость создания сети. Так как отсутствуют затраты, связанные с покупкой дорогостоящего сервера, дорогой сетевой операционной системы и т.д.

Недостатки модели:

1. Низкое быстродействие при сетевых запросах. Рабочая станция всегда обрабатывает сетевые запросы медленнее, чем специализированный компьютер – сервер. Помимо этого на рабочей станции всегда выполняются различные задачи (набор текста, создание рисунков, математические расчеты и др.), которые замедляют ответы на сетевые запросы.

2. Отсутствие единой информационной базы, так как вся информация распределена по отдельным компьютерам. При этом приходиться обращаться к нескольким компьютерам для получения необходимой информации.

3. Отсутствие единой системы безопасности информации. Каждый персональный компьютер защищает свою информацию посредством операционной системы. Однако операционные системы персональных компьютеров, как правило, обладают меньшей защищенностью, чем сетевые операционные системы для серверов. Поэтому "взломать" такую сеть значительно проще.

4. Зависимость наличия в системе информации от состояния компьютера. Если какой-то компьютер будет выключен, то информация, хранимая на нем, будет недоступна другим пользователям.

В сети типа клиент-сервер имеется один или несколько главных компьютеров - серверов. В таких системах всей основной информацией управляют серверы.

Сеть типа клиент-сервер является функционально не симметричной: в ней используются два типа компьютеров - одни ориентированны на выполнение серверных функций и работают под управлением специализированных серверных ОС, а другие - выполняют клиентские функции и работают под управлением обычных ОС. Функциональная несимметричность вызывает и несимметричность аппаратуры - для выделенных серверов используются более мощные компьютеры с большими объемами оперативной и внешней памяти.

Достоинствами данной модели являются:

1. Высокое быстродействие сети, так как сервер быстро обрабатывает сетевые запросы и не загружен другими задачами.

2. Наличие единой информационной базы и системы безопасности. Взломать сервер можно, но это значительно сложнее, чем рабочую станцию.

3. Простота управления все сетью. Так как управление сетью заключается в основном в управлении только сервера.

Недостаткимодели:

1. Высокая стоимость реализации, так как требуется покупать дорогостоящий сервер и сетевую операционную систему для сервера.

2. Зависимость быстродействия сети от сервера. Если сервер будет не достаточно мощным, то работа в сети может сильно замедляться.

3. Для правильной работы сети требуется наличие дополнительного обслуживающего персонала, т.е. в организации должна быть введена должность администратор сети.

— это способ описания конфигурации сети, схема расположения и соединения сетевых устройств. Топология сети позволяет увидеть всю ее структуру, сетевые устройства, входящие в сеть, и их связь между собой.

Выделяют несколько видов топологий: физическую, логическую, информационную и топологию управления обменом. В этой статье мы поговорим о физической топологии сети, которая описывает реальное расположение и связи между узлами локальной сети.

Выделяют несколько основных видов физических топологий сетей:

  1. Шинная топология сети — топология, при которой все компьютеры сети подключаются к одному кабелю, который используется совместно всеми рабочими станциями. При такой топологии выход из строя одной машины не влияет на работу всей сети в целом. Недостаток же заключается в том, что при выходе из строя или обрыве шины нарушается работа всей сети.
  2. Топология сети «Звезда» — топология, при которой все рабочие станции имеют непосредственное подключение к серверу, являющемуся центром "звезды". При такой схеме подключения, запрос от любого сетевого устройства направляется прямиком к серверу, где он обрабатывается с различной скоростью, зависящей от аппаратных возможностей центральной машины. Выход из строя центральной машины приводит к остановке всей сети. Выход же из строя любой другой машины на работу сети не влияет.
  3. Кольцевая топология сети — схема, при которой все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется с входом другого. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении. Такая топология сети не требует установки дополнительного оборудования (сервера или хаба), но при выходе из строя одного компьютера останавливается и работа всей сети.
  4. Ячеистая топология сети — топология, при которой каждая рабочая станция соединяется со всеми другими рабочими станциями этой же сети. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Поэтому обрыв кабеля не приведет к потере соединения между двумя компьютерами. Эта топология сети допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.
  5. При смешанной топологии применяются сразу несколько видов соединения компьютеров между собой. Встречается она достаточно редко в особо крупных компаниях и организациях.

Для чего нужно знать виды топологий и все их минусы и плюсы? От схемы сети зависит состав оборудования и программного обеспечения. Топологию выбирают, исходя из потребностей предприятия. Кроме того, знание топологии сети позволяет оценивать ее слабые места, а также зависимость стабильности ее работы от отдельных составляющих, тщательнее планировать последующие подключения нового сетевого оборудования и ПК. В случае какого-то сбоя, отсутствия связи с каким-либо компьютером сети, на карте всегда можно посмотреть, где данное устройство располагается, на каком этаже, в каком офисе или помещении, на что, прежде всего, нужно обратить внимание и куда идти в первую очередь для устранения неисправности.

И тут мы подошли к одному из ключевых вопросов, интересующих всех системных администраторов, а именно: как нарисовать схему сети с минимальными затратами времени, сил и средств? Если сеть велика и состоит из десятков серверов, сотен компьютеров и еще множества других сетевых устройств (принтеров, свитчей и т.д.), даже опытному системному администратору (не говоря уже о новичке) очень сложно быстро разобраться во всех связях между сетевым оборудованием. О создании топологии сети вручную тут и речи быть не может. К счастью, современный рынок ПО предлагает специальные программы для автоматического исследования и построения схемы сети. Это позволяет системному администратору узнать, где и какое оборудование находится, не прибегая к ручному исследованию проводов.

Таким образом, даже если вы в компании новичок, и предыдущий сисадмин не горел большим желанием «сдавать» вам сеть по всем правилам, программы рисования топологии сети позволят вам быстро включиться в работу и начать ее с построения схемы вашей сети.

Топология (конфигурация) – это способ соединения компьютеров в сеть. Тип топологии определяет стоимость, защищенность, производительность и надежность эксплуатации рабочих станций, для которых имеет значение время обращения к файловому серверу.

Понятие топологии широко используется при создании сетей. Одним из подходов к классификации топологий ЛВС является выделение двух основных классов топологий: широковещательные и последовательные.

В широковещательных топологиях ПК передает сигналы, которые могут быть восприняты остальными ПК. К таким топологиям относятся топологии: общая шина, дерево, звезда.

В последовательных топологиях информация передается только одному ПК. Примерами таких топологий являются: произвольная (произвольное соединение ПК), кольцо, цепочка.

При выборе оптимальной топологии преследуются три основных цели:

Обеспечение альтернативной маршрутизации и максимальной надежности передачи данных;

Выбор оптимального маршрута передачи блоков данных;

Предоставление приемлемого времени ответа и нужной пропускной способности.

При выборе конкретного типа сети важно учитывать ее топологию. Основными сетевыми топологиями являются: шинная (линейная) топология, звездообразная, кольцевая и древовидная.

Например, в конфигурации сети ArcNet используется одновременно и линейная, и звездообразная топология. Сети Token Ring физически выглядят как звезда, но логически их пакеты передаются по кольцу. Передача данных в сети Ethernet происходит по линейной шине, так что все станции видят сигнал одновременно.

Виды топологий

Существуют пять основных топологий (рис. 3.1): общая шина (Bus); кольцо (Ring); звезда (Star); древовидная (Tree); ячеистая (Mesh).

Рис. 3.1. Типы топологий

Общая шина

Общая шина – это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом. Топология общая шина (рис. 3.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети.

В случае топологии Общая шина кабель используется всеми станциями по очереди:

Рис. 3.2. Топология Общая шина

1. При передаче пакетов данных каждый компьютер адресует его конкретному компьютеру ЛВС, передавая его по сетевому кабелю в виде электрических сигналов.

2. Пакет в виде электрических сигналов передается по «шине» в обоих направлениях всем компьютерам сети.

3. Однако информацию принимает только тот адрес, который соответствует адресу получателя, указанному в заголовке пакета. Так как в каждый момент времени в сети может вести передачу только одна PC, то производительности ЛВС зависит от количества PC, подключенных к шине. Чем их больше, тем больше ожидающих передачи данных, тем ниже производительности сети. Однако нельзя указать прямую зависимость пропускной способности сети от количества PC, так как на нее также влияют:

· характеристики аппаратного обеспечения PC сети;

· частота, с которой передают сообщения PC;

· тип работающих сетевых приложений;

· тип кабеля и расстояние между PC в сети.

«Шина» – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе всей сети.

4. Данные в виде электрических сигналов распространяются по всей сети от одного конца кабеля к другому, и, достигая конца кабеля, будут отражаться и занимать «шину», что не позволит другим компьютерам осуществлять передачу.

5. Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливаются терминаторы (Т), поглощающие сигналы, прошедшие по «шине»,

6. При значительном расстоянии между PC (например, 180 м для тонкого коаксиального кабеля) в сегменте «шины» может наблюдаться ослабление электрического сигнала, что может привести к искажению или потере передаваемого пакета данных. В этом случае исходный сегмент следует разделить на два, установив между ними дополнительное устройство – репитер (повторитель), который усиливает принятый сигнал перед тем, как послать его дальше.

Правильно размещенные на длине сети повторители позволяют увеличить длину обслуживаемой сети и расстояние между соседними компьютерами. Следует помнить, что все концы сетевого кабеля должны быть к чему-либо подключены: к PC, терминатору или повторителю.

Разрыв сетевого кабеля или отсоединение одного из его концов приводит к прекращению функционирования сети. Сеть «падает». Сами PC сети остаются полностью работоспособными, но не могут взаимодействовать друг с другом. Если ЛВС на основе сервера, где большая часть программных и информационных ресурсов хранится на сервере, то PC, хотя и остаются работоспособными, но для практической работы малопригодны.

Шинная топология используется в сетях Ethernet, однако в последнее время встречается редко.

Примерами использования топологии общая шина является сеть 10Base-5 (соединение ПК толстым коаксиальным кабелем) и 10Base-2 (соединение ПК тонким коаксиальным кабелем).

Кольцо

Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис. 3.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто. Топология Кольцо имеет хорошо предсказуемое время отклика, определяемое числом рабочих станций.

Рис. 3.3. Топология Кольцо

Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях Token Ring кабельная ветвь из центрального концентратора называется MAU (Multiple Access Unit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо.

Звезда

Звезда – это топология ЛВС (рис. 3.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправного узла. Однако, если неисправен центральный узел, вся сеть выходит из строя.

Рис. 3.4. Топология Звезда

В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда, при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа).

Примером звездообразной топологии является топология Ethernet с кабелем типа Витая пара 10BASE-T, центром Звезды обычно является Hub.

Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.

Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Во-вторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара. В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте.

Сравнительные характеристики базовых сетевых топологий представлены в табл. 3.1.

Таблица 3.1. Сравнительные характеристики базовых сетевых топологий

Топология

Преимущества

Недостатки

Экономный расход кабеля;

Недорогая и несложная в использовании среда передачи;

Простота и надежность;

Легкая расширяемость

При значительных объемах трафика уменьшается пропускная способность;

Трудная локализация проблем;

Выход из строя любого сегмента кабеля остановит работу всей сети

«Кольцо»

Все PC имеют равный доступ;

Количество пользователей не сказывается на производительности

Выход из строя одной PC выводит из строя всю сеть;

Трудно локализовать проблемы;

Изменение конфигурации сети требует остановки всей сети

«Звезда»

Легко производить монтаж сети или модифицировать сеть, добавляя новые PC;

Централизованный контроль и управление;

Выход из строя одного PC или одного сегмента кабеля не влияет на работу всей сети

Выход из строя или отключение питания концентратора (коммутатора) выводит из строя всю сеть; большой расход кабеля



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!